A simple Snakemake pipeline to run inferCNV on SingleCellExperiment objects.
pipenv install --python 3.8
pipenv shell
input_rds: peng-scRNASeq-manually-filtered-sce-tumour-normal-assigned.rds
annotation_column: cell_type
sample_column: donor
tumour_type: Tumour epithelial
normal_type: Normal epithelial
cutoff: 0.1
denoise: TRUE
samples:
- CRR034499
- CRR034500
Key entries:
input_rds
: input SingleCellExperiment containing both tumour and normal. Gene names should either be[SYMBOL]
or[ENSEMBLID]-[SYMBOL]
annotation_column
: what column ofcolData(sce)
says which cells are tumour vs normal?sample_column
: what column ofcolData(sce)
refers to sample (patient/donor)? The pipeline runs inferCNV once per donortumour_type
The ID incolData(sce)[[annotation_column]]
that refers to the cells that are tumour/malignantnormal_type
The ID incolData(sce)[[annotation_column]]
that refers to the cells that are 'normal'cutoff
,denoise
parameters passed to inferCNVsamples
list of samples (patients/donors/etc) to run inferCNV over. Should be present incolData(sce)[[sample_column]]
snakemake -j1 --configfile config/peng-test.yml --use-singularity --singularity-args "--bind /home/campbell/share/:/home/campbell/share/"
replacing /home/campbell/share
with your directory.
- This pipeline aggregates genes to gene symbol by summing