DeMethify is a partial-reference based methylation deconvolution algorithm that uses a weighted constrained version of an iteratively optimized negative matrix factorization algorithm.
After installing, you can run DeMethify with the following arguments in the case of read format data input:
python demethify --methfreq <methfreq_csv> --counts <counts_csv> --ref <ref_csv> --outdir <outdir> --nbunknown <nb_unknown>
in the case of no read format data input :
python demethify --methfreq <methfreq_csv> --noreadformat --ref <ref_csv> --outdir <outdir> --nbunknown <nb_unknown>
Argument | Description |
---|---|
methfreq | Methylation frequency CSV file (values between 0 and 1) |
ref | Reference methylation matrix CSV file |
outdir | Output directory (can exist but must be empty) |
nbunknown | Number of unknown cell types to estimate |
Argument | Description |
---|---|
counts | Read counts CSV file |
noreadformat | Flag to use when the data isn't using the read format (like Illumina epic arrays) |
iterations | Numbers of iterations for outer and inner loops (default = 50000, 50) |
termination | Termination condition for cost function (default = 1e-2) |
fillna | Replace every NA by 0 in the given data |