/nn-flow-cytometry

Reproducible scripts for manuscript: Prediction of functional markers of mass cytometry data via deep learning (2019). Solis-Lemus, C., X. Ma, M. Hostetter II, S. Kundu, P. Qiu, D. Pimentel-Alarcon

Primary LanguageJulia

Prediction of functional markers of mass cytometry data via deep learning

All scripts for the analysis of the paper:

Prediction of functional markers of mass cytometry data via deep learning (2019). Solis-Lemus, C., X. Ma, M. Hostetter II, S. Kundu, P. Qiu, D. Pimentel-Alarcon.

Data

  • For individual 1, we have collected 100,000 cells, and for each cell we have 50 features: 18 surface markers (which identify the type of cell) and 32 functional markers (which identify the function of the cell)
  • We collect this information at baseline: matrix 100k by 50. Future: collect data at several experimental moments. So, if we have N experiments => N+1 matrices 100k by 50: B (baseline), E_1,...,E_N
  • We want to use the baseline information to predict the funcional markers from surface markers (which do not change with experimental settings). That is, use B to predict E_i with a neural network
  • The structure of the data is given by: each row is a cell. The meaning of the columns are as follows:

Surface markers:

  • 191-DNA
  • 193-DNA
  • 115-CD45
  • 139-CD45RA
  • 142-CD19
  • 144-CD11b
  • 145-CD4
  • 146-CD8
  • 148-CD34
  • 147-CD20
  • 158-CD33
  • 160-CD123
  • 167-CD38
  • 170-CD90
  • 110_114-CD3

Functional markers:

  • 141-pPLCgamma2
  • 150-pSTAT5
  • 152-Ki67
  • 154-pSHP2
  • 151-pERK1/2
  • 153-pMAPKAPK2
  • 156-pZAP70/Syk
  • 159-pSTAT3
  • 164-pSLP-76
  • 165-pNFkB
  • 166-IkBalpha
  • 168-pH3
  • 169-pP38
  • 171-pBtk/Itk
  • 172-pS6
  • 174-pSrcFK
  • 176-pCREB
  • 175-pCrkL

Analyses

See script folder. The file notebook-log.md has the detailed steps in the analyses.