* DeepChemStable: Chemical Stability Prediction with an Attention-Based Graph Convolution Network (Li, 2019)
Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (Xiong, 2019)
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification (2019)
- Graph Representation Learning (Stanford university
- Jure Leskovec | Advancements in Graph Neural Networks
- Generalizing Convolutions for Deep Learning
- Lista de Reproduccion - Representation Learning
- Xavier Bresson: "Convolutional Neural Networks on Graphs"
- BMVA Symposium: Deep Learning in 3D: Michael Edward Graph Convolutional Neural Networks
- Learning Equivariant and Hybrid Message Passing on Graphs | Max Welling
- [IPAM2019] Thomas Kipf "Unsupervised Learning with Graph Neural Networks"
- A Literature Review on Graph Neural Networks
- Learning the Structure of Graph Neural Networks | Mathias Niepert | heidelberg.ai
- CS224W Classes Playlist
- Un review paper de GNNs: https://arxiv.org/abs/1806.01261
- Usaremos el codigo de deepmind: https://github.com/deepmind/graph_nets
- Usaremos dos datasets del Open Graph Database: https://ogb.stanford.edu/
- Un buen review de attribution: https://arxiv.org/abs/1711.06104
- Un review paper de GNNs: https://arxiv.org/abs/1806.01261
- Usaremos el codigo de deepmind: https://github.com/deepmind/graph_nets
- Distill post sobre attribucion: https://distill.pub/2020/attribution-baselines/
Link de google colab: https://colab.research.google.com/github/beangoben/gnn_workshop_riiaa/blob/master/Prediccion_de_Grafos_y_attribucion.ipynb?authuser=1#scrollTo=5DA0QH4Tovux
- Usaremos rdkit para manipular moleculas: https://www.rdkit.org/
- Usaremos scikit-learn para modelos de ML: https://scikit-learn.org/stable/
- Usaremos tensorflow/sonnet/graphnets para deep learning con molecules: https://www.tensorflow.org/, https://github.com/deepmind/sonnet, https://github.com/deepmind/graph_nets
- Para reducción de dimensionalidad usaremos UMAP: https://pair-code.github.io/understanding-umap/supplement.html
- Para descriptores quimo-informáticos usaremos mordred: https://github.com/mordred-descriptor/mordred https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y (paper de modred)
- Un review de deep learning e inverse design: https://science.sciencemag.org/content/361/6400/360.abstract
- La parte 1 de "Deep Learning de Ian Goodfellow" (https://github.com/janishar/mit-deep-learning-book-pdf/tree/master/chapter-wise-pdf), en particular capitulo 3,4 y 5.
- El github de Jax: https://github.com/google/jax
- El github de Flax: https://github.com/google/flax
- Video introductorio a Jax: https://www.youtube.com/watch?v=0mVmRHMaOJ4
- Video introductorio a diferenciación automática: https://www.youtube.com/watch?v=NG21KWZSiok