/GCNN_resources

Lista de Materiales para estudio de Graph Convolutional Neural Networks (GCNN) y Graph Neural Networks (GNN)

Graph Convolutional Neural Networks and Graph Neural Networks - Resources

Papers with code


* DeepChemStable: Chemical Stability Prediction with an Attention-Based Graph Convolution Network (Li, 2019)

Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals (2019)

Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (Xiong, 2019)

Drug–target affinity prediction using graph neural network and contact maps (Jiang, 2020)

A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification (2019)

Molecule Attention Transformer (Maziarka, 2020)

Youtube Videos

RIIAA materiales

Tutorial: Graph Neural Networks

Material Previo

Tutorial: Atribución en Grafos

Material Previo

Link de google colab: https://colab.research.google.com/github/beangoben/gnn_workshop_riiaa/blob/master/Prediccion_de_Grafos_y_attribucion.ipynb?authuser=1#scrollTo=5DA0QH4Tovux

Tutorial: Machine Learning y Moléculas

Maeterial Previo

Tutorial: Deep Learning con JAX

Material Previo