Version 1.3.0.
RTX Direct Illumination is a framework that facilitates the implementations of efficient direct light sampling in real-time renderers. It is based on the ReSTIR algorithm published in the paper called "Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting" by B. Bitterli et al.
For more information, see the NVIDIA Developer Page.
rtxdi-sdk
contains the SDK source code files that are meant to be included into the application build:
rtxdi-sdk/include
has the include files, both for host code and for shadersrtxdi-sdk/include/rtxdi/ResamplingFunctions.hlsli
is the main shader include file that contains the resampling implementationrtxdi-sdk/shaders
has the shader files that are supposed to be compiled through whatever means the application normally usesrtxdi-sdk/src
has the host code with various utility functions for setting up the parameters and resources for resampling
src
contains the sample application host code.
shaders
contains the sample application shaders.
donut
is a submodule structure with the "Donut" rendering framework used to build the sample apps.
NRD
is a submodule with the "NRD" denoiser library.
DLSS
is a submodule with the Deep Learning Super-Sampling SDK.
RTXGI
is a submodule with the RTX Global Illumination SDK.
Additional contents delivered through packman:
dxc
is a recent version of DirectX Shader Compiler;
media
contains the media files necessary for the sample apps to run.
-
Clone the repository with all submodules:
git clone --recursive https://github.com/NVIDIAGameWorks/RTXDI.git
If the clone was made non-recursively and the submodules are missing, clone them separately:
git submodule update --init --recursive
-
Pull the media files and DXC binaries from packman:
update_dependencies.bat
-
Configure the solution with CMake. The easiest option is to use CMake GUI.
-
Assuming that the RTXDI SDK tree is located in
D:\RTXDI
, set the following parameters in the GUI:- "Where is the source code" to
D:\RTXDI
- "Where to build the binaries" to
D:\RTXDI\build
- "Where is the source code" to
-
Click "Configure", set "Generator" to the Visual Studio you're using (tested with VS 2019 version 16.8.2), set "Optional platform" to x64, click "Finish".
-
Click "Generate", then "Open Project".
-
Build the solution with Visual Studio
-
Run the
rtxdi-sample
orminimal-sample
projects.
-
Make sure the necessary build packages are installed on the target system. For Ubuntu 20.04 (amd64), the following command is sufficient:
sudo apt install build-essential cmake xorg-dev libtinfo5
-
Clone the repository with all submodules:
git clone --recursive https://github.com/NVIDIAGameWorks/RTXDI.git
If the clone was made non-recursively and the submodules are missing, clone them separately:
git submodule update --init --recursive
-
Pull the media files and DXC binaries from packman:
cd RTXDI && ./update_dependencies.sh
-
Create a build folder:
mkdir build && cd build
-
Configure the project with CMake:
cmake ..
-
Build:
make -j8
(example for an 8-core CPU, or use Ninja instead)
-
Run:
bin/rtxdi-sample
orbin/minimal-sample
The RTXDI sample applications can run using D3D12 or Vulkan, which is achieved through the NVRHI rendering API abstraction layer and HLSL shader compilation to SPIR-V through DXC (DirectX Shader Compiler). We deliver a compatible version of DXC through packman. If you wish to use a different (e.g. newer) version of DXC, it can be obtained from Microsoft/DirectXShaderCompiler on GitHub. The path to a custom version of DXC can be configured using the DXC_DXIL_EXECUTABLE
and DXC_SPIRV_EXECUTABLE
CMake variables.
By default, the sample apps will run using D3D12 on Windows. To start them in Vulkan mode, add --vk
to the command line. To compile the sample apps without Vulkan support, set the CMake variable DONUT_WITH_VULKAN
to OFF
and re-generate the project.
See the Integration Guide.