/catalyst

Accelerated deep learning R&D

Primary LanguagePythonApache License 2.0Apache-2.0

Catalyst logo

Accelerated Deep Learning R&D

CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

codestyle docs catalyst integrations

python python python

os os os

Catalyst is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop.
Break the cycle – use the Catalyst!

Read more about our vision in the Project Manifest. Catalyst is a part of the PyTorch Ecosystem.
Catalyst Ecosystem consists of:

  • Alchemy - experiments logging & visualization
  • Catalyst - accelerated deep learning R&D
  • Reaction - convenient deep learning model serving

Catalyst at AI Landscape

Catalyst at PyTorch Ecosystem Day

Catalyst poster


Getting started

pip install -U catalyst
import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    ),
}

runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)

# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3, 5)),
        dl.PrecisionRecallF1SupportCallback(
            input_key="logits", target_key="targets", num_classes=10
        ),
    ],
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
    load_best_on_end=True,
)

# model evaluation
metrics = runner.evaluate_loader(
    loader=loaders["valid"],
    callbacks=[dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3, 5))],
)
assert "accuracy" in metrics.keys()

# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10

features_batch = next(iter(loaders["valid"]))[0]
# model stochastic weight averaging
model.load_state_dict(utils.get_averaged_weights_by_path_mask(logdir="./logs", path_mask="*.pth"))
# model tracing
utils.trace_model(model=runner.model, batch=features_batch)
# model quantization
utils.quantize_model(model=runner.model)
# model pruning
utils.prune_model(model=runner.model, pruning_fn="l1_unstructured", amount=0.8)
# onnx export
utils.onnx_export(model=runner.model, batch=features_batch, file="./logs/mnist.onnx", verbose=True)

Step-by-step Guide

  1. Start with Catalyst 2021–Accelerated PyTorch 2.0 introduction.
  2. Check the minimal examples.
  3. Try notebook tutorials with Google Colab.
  4. Read the blog posts with use-cases and guides.
  5. Learn machine learning with our "Deep Learning with Catalyst" course.
  6. If you would like to contribute to the project, follow our contribution guidelines.
  7. If you are motivated by Catalyst vision, you could support our initiative or write us for collaboration.
  8. And finally, join our slack if you want to chat with the team and contributors.

Table of Contents

Overview

Catalyst helps you implement compact but full-featured Deep Learning pipelines with just a few lines of code. You get a training loop with metrics, early-stopping, model checkpointing, and other features without the boilerplate.

Installation

Generic installation:

pip install -U catalyst
Specialized versions, extra requirements might apply

pip install catalyst[ml]         # installs ML-based Catalyst
pip install catalyst[cv]         # installs CV-based Catalyst
# master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade
# all extensions are listed here:
# https://github.com/catalyst-team/catalyst/blob/master/setup.py#L87#L99

Catalyst is compatible with: Python 3.6+. PyTorch 1.3+.
Tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10, and Windows Subsystem for Linux.

Minimal Examples

CustomRunner – PyTorch for-loop decomposition

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    ),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveValueMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute other metrics of interest
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)
        # run model backward pass
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10

ML - linear regression

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    num_epochs=8,
    verbose=True,
)

ML - multiclass classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples,) * num_classes).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy03",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=num_classes),
        # uncomment for extra metrics:
        # dl.PrecisionRecallF1SupportCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
        # dl.AUCCallback(input_key="logits", target_key="targets"),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
    ],
)

ML - multilabel classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.AUCCallback(input_key="scores", target_key="targets"),
        # uncomment for extra metrics:
        # dl.MultilabelAccuracyCallback(input_key="scores", target_key="targets", threshold=0.5),
        # dl.MultilabelPrecisionRecallF1SupportCallback(
        #     input_key="scores", target_key="targets", threshold=0.5
        # ),
    ]
)

ML - multihead classification

import torch
from torch import nn, optim
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes1, num_classes2 = int(1e4), int(1e1), 4, 10
X = torch.rand(num_samples, num_features)
y1 = (torch.rand(num_samples,) * num_classes1).to(torch.int64)
y2 = (torch.rand(num_samples,) * num_classes2).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y1, y2)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

class CustomModule(nn.Module):
    def __init__(self, in_features: int, out_features1: int, out_features2: int):
        super().__init__()
        self.shared = nn.Linear(in_features, 128)
        self.head1 = nn.Linear(128, out_features1)
        self.head2 = nn.Linear(128, out_features2)

    def forward(self, x):
        x = self.shared(x)
        y1 = self.head1(x)
        y2 = self.head2(x)
        return y1, y2

# model, criterion, optimizer, scheduler
model = CustomModule(num_features, num_classes1, num_classes2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2])

class CustomRunner(dl.Runner):
    def handle_batch(self, batch):
        x, y1, y2 = batch
        y1_hat, y2_hat = self.model(x)
        self.batch = {
            "features": x,
            "logits1": y1_hat,
            "logits2": y2_hat,
            "targets1": y1,
            "targets2": y2,
        }

# model training
runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"),
        dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"),
        dl.MetricAggregationCallback(prefix="loss", metrics=["loss1", "loss2"], mode="mean"),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.AccuracyCallback(
            input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_"
        ),
        dl.AccuracyCallback(
            input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_"
        ),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm"
        # ),
        # dl.ConfusionMatrixCallback(
        #     input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm"
        # ),
        dl.CheckpointCallback(
            logdir="./logs/one",
            loader_key="valid", metric_key="one_accuracy", minimize=False, save_n_best=1
        ),
        dl.CheckpointCallback(
            logdir="./logs/two",
            loader_key="valid", metric_key="two_accuracy03", minimize=False, save_n_best=3
        ),
    ],
    loggers={"console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb")},
)

ML – RecSys

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_users, num_features, num_items = int(1e4), int(1e1), 10
X = torch.rand(num_users, num_features)
y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_items)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"),
        # uncomment for extra metrics:
        # dl.AUCCallback(input_key="scores", target_key="targets"),
        # dl.HitrateCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)),
        # dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)),
        # dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)),
        # dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.CheckpointCallback(
            logdir="./logs", loader_key="valid", metric_key="loss", minimize=True
        ),
    ]
)

CV - MNIST classification

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    ),
}

runner = dl.SupervisedRunner()
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
# uncomment for extra metrics:
#     callbacks=[
#         dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10),
#         dl.PrecisionRecallF1SupportCallback(
#             input_key="logits", target_key="targets", num_classes=10
#         ),
#         dl.AUCCallback(input_key="logits", target_key="targets"),
#         # catalyst[ml] required ``pip install catalyst[ml]``
#         dl.ConfusionMatrixCallback(
#             input_key="logits", target_key="targets", num_classes=num_classes
#         ),
#     ]
)

CV - MNIST segmentation

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.nn import IoULoss


model = nn.Sequential(
    nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(),
    nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(),
)
criterion = IoULoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    ),
}

class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch):
        x = batch[self._input_key]
        x_noise = (x + torch.rand_like(x)).clamp_(0, 1)
        x_ = self.model(x_noise)
        self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x}

runner = CustomRunner(
    input_key="features", output_key="scores", target_key="targets", loss_key="loss"
)
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.IOUCallback(input_key="scores", target_key="targets"),
        dl.DiceCallback(input_key="scores", target_key="targets"),
        dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2),
    ],
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
)

CV - MNIST model distillation

import os
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST

# [!] teacher model should be already pretrained
teacher = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
student = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = {"cls": nn.CrossEntropyLoss(), "kl": nn.KLDivLoss(reduction="batchmean")}
optimizer = optim.Adam(student.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    ),
}

class DistilRunner(dl.Runner):
    def handle_batch(self, batch):
        x, y = batch

        self.model["teacher"].eval()  # let's manually set teacher model to eval mode
        with torch.no_grad():
            t_logits = self.model["teacher"](x)

        s_logits = self.model["student"](x)
        self.batch = {
            "t_logits": t_logits, "s_logits": s_logits, "targets": y,
            "s_logprobs": F.log_softmax(s_logits, dim=-1), "t_probs": F.softmax(t_logits, dim=-1)
        }

runner = DistilRunner()
callbacks = [
    dl.AccuracyCallback(
        input_key="t_logits", target_key="targets", num_classes=2, prefix="teacher_"
    ),
    dl.AccuracyCallback(
        input_key="s_logits", target_key="targets", num_classes=2, prefix="student_"
    ),
    dl.CriterionCallback(
        input_key="s_logits", target_key="targets", metric_key="cls_loss", criterion_key="cls"
    ),
    dl.CriterionCallback(
        input_key="s_logprobs", target_key="t_probs", metric_key="kl_div_loss", criterion_key="kl"
    ),
    dl.MetricAggregationCallback(prefix="loss", metrics=["kl_div_loss", "cls_loss"], mode="mean"),
    dl.OptimizerCallback(metric_key="loss", model_key="student"),
    dl.CheckpointCallback(
        logdir="./logs", loader_key="valid", metric_key="loss", minimize=True, save_n_best=3
    ),
]
# model training
runner.train(
    model={"teacher": teacher, "student": student},
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    logdir="./logs",
    verbose=True,
    callbacks=callbacks,
)

CV - MNIST metric learning

import os
from torch.optim import Adam
from torch.utils.data import DataLoader
from catalyst import data, dl
from catalyst.contrib import datasets, models, nn
from catalyst.data.transforms import Compose, Normalize, ToTensor


# 1. train and valid loaders
transforms = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])

train_dataset = datasets.MnistMLDataset(root=os.getcwd(), download=True, transform=transforms)
sampler = data.BalanceBatchSampler(labels=train_dataset.get_labels(), p=5, k=10)
train_loader = DataLoader(dataset=train_dataset, sampler=sampler, batch_size=sampler.batch_size)

valid_dataset = datasets.MnistQGDataset(root=os.getcwd(), transform=transforms, gallery_fraq=0.2)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024)

# 2. model and optimizer
model = models.MnistSimpleNet(out_features=16)
optimizer = Adam(model.parameters(), lr=0.001)

# 3. criterion with triplets sampling
sampler_inbatch = data.HardTripletsSampler(norm_required=False)
criterion = nn.TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch)

# 4. training with catalyst Runner
class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch) -> None:
        if self.is_train_loader:
            images, targets = batch["features"].float(), batch["targets"].long()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets,}
        else:
            images, targets, is_query = \
                batch["features"].float(), batch["targets"].long(), batch["is_query"].bool()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets, "is_query": is_query}

callbacks = [
    dl.ControlFlowCallback(
        dl.CriterionCallback(input_key="embeddings", target_key="targets", metric_key="loss"),
        loaders="train",
    ),
    dl.ControlFlowCallback(
        dl.CMCScoreCallback(
            embeddings_key="embeddings",
            labels_key="targets",
            is_query_key="is_query",
            topk_args=[1],
        ),
        loaders="valid",
    ),
    dl.PeriodicLoaderCallback(
        valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2
    ),
]

runner = CustomRunner(input_key="features", output_key="embeddings")
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    callbacks=callbacks,
    loaders={"train": train_loader, "valid": valid_loader},
    verbose=False,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="cmc01",
    minimize_valid_metric=False,
    num_epochs=10,
)

CV - MNIST GAN

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.nn.modules import Flatten, GlobalMaxPool2d, Lambda
from catalyst.data.transforms import ToTensor

latent_dim = 128
generator = nn.Sequential(
    # We want to generate 128 coefficients to reshape into a 7x7x128 map
    nn.Linear(128, 128 * 7 * 7),
    nn.LeakyReLU(0.2, inplace=True),
    Lambda(lambda x: x.view(x.size(0), 128, 7, 7)),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(128, 1, (7, 7), padding=3),
    nn.Sigmoid(),
)
discriminator = nn.Sequential(
    nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    GlobalMaxPool2d(),
    Flatten(),
    nn.Linear(128, 1),
)

model = {"generator": generator, "discriminator": discriminator}
criterion = {"generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss()}
optimizer = {
    "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
    "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
}
loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
    )
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        batch_size = 1
        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device)
        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        return generated_images

    def handle_batch(self, batch):
        real_images, _ = batch
        batch_size = real_images.shape[0]

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device)

        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        # Combine them with real images
        combined_images = torch.cat([generated_images, real_images])

        # Assemble labels discriminating real from fake images
        labels = \
            torch.cat([torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))]).to(self.device)
        # Add random noise to the labels - important trick!
        labels += 0.05 * torch.rand(labels.shape).to(self.device)

        # Discriminator forward
        combined_predictions = self.model["discriminator"](combined_images)

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device)
        # Assemble labels that say "all real images"
        misleading_labels = torch.zeros((batch_size, 1)).to(self.device)

        # Generator forward
        generated_images = self.model["generator"](random_latent_vectors)
        generated_predictions = self.model["discriminator"](generated_images)

        self.batch = {
            "combined_predictions": combined_predictions,
            "labels": labels,
            "generated_predictions": generated_predictions,
            "misleading_labels": misleading_labels,
        }


runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    callbacks=[
        dl.CriterionCallback(
            input_key="combined_predictions",
            target_key="labels",
            metric_key="loss_discriminator",
            criterion_key="discriminator",
        ),
        dl.CriterionCallback(
            input_key="generated_predictions",
            target_key="misleading_labels",
            metric_key="loss_generator",
            criterion_key="generator",
        ),
        dl.OptimizerCallback(
            model_key="generator",
            optimizer_key="generator",
            metric_key="loss_generator"
        ),
        dl.OptimizerCallback(
            model_key="discriminator",
            optimizer_key="discriminator",
            metric_key="loss_discriminator"
        ),
    ],
    valid_loader="train",
    valid_metric="loss_generator",
    minimize_valid_metric=True,
    num_epochs=20,
    verbose=True,
    logdir="./logs_gan",
)

# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0, 0].cpu().numpy())

CV - MNIST VAE

import os
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.contrib.datasets import MNIST
from catalyst.data.transforms import ToTensor

LOG_SCALE_MAX = 2
LOG_SCALE_MIN = -10

def normal_sample(loc, log_scale):
    scale = torch.exp(0.5 * log_scale)
    return loc + scale * torch.randn_like(scale)

class VAE(nn.Module):
    def __init__(self, in_features, hid_features):
        super().__init__()
        self.hid_features = hid_features
        self.encoder = nn.Linear(in_features, hid_features * 2)
        self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid())

    def forward(self, x, deterministic=False):
        z = self.encoder(x)
        bs, z_dim = z.shape

        loc, log_scale = z[:, : z_dim // 2], z[:, z_dim // 2 :]
        log_scale = torch.clamp(log_scale, LOG_SCALE_MIN, LOG_SCALE_MAX)

        z_ = loc if deterministic else normal_sample(loc, log_scale)
        z_ = z_.view(bs, -1)
        x_ = self.decoder(z_)

        return x_, loc, log_scale

class CustomRunner(dl.IRunner):
    def __init__(self, logdir, device):
        super().__init__()
        self._logdir = logdir
        self._device = device

    def get_engine(self):
        return dl.DeviceEngine(self._device)

    def get_loggers(self):
        return {
            "console": dl.ConsoleLogger(),
            "csv": dl.CSVLogger(logdir=self._logdir),
            "tensorboard": dl.TensorboardLogger(logdir=self._logdir),
        }

    @property
    def stages(self):
        return ["train"]

    def get_stage_len(self, stage: str) -> int:
        return 3

    def get_loaders(self, stage: str):
        loaders = {
            "train": DataLoader(
                MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
            ),
            "valid": DataLoader(
                MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
            ),
        }
        return loaders

    def get_model(self, stage: str):
        model = self.model if self.model is not None else VAE(28 * 28, 64)
        return model

    def get_optimizer(self, stage: str, model):
        return optim.Adam(model.parameters(), lr=0.02)

    def get_callbacks(self, stage: str):
        return {
            "optimizer": dl.OptimizerCallback(metric_key="loss"),
            "checkpoint": dl.CheckpointCallback(
                self._logdir, loader_key="valid", metric_key="loss", minimize=True
            ),
        }

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveValueMetric(compute_on_call=False)
            for key in ["loss_ae", "loss_kld", "loss"]
        }

    def handle_batch(self, batch):
        x, _ = batch
        x = x.view(x.size(0), -1)
        x_, loc, log_scale = self.model(x, deterministic=not self.is_train_loader)

        loss_ae = F.mse_loss(x_, x)
        loss_kld = (-0.5 * torch.sum(1 + log_scale - loc.pow(2) - log_scale.exp(), dim=1)).mean()
        loss = loss_ae + loss_kld * 0.01

        self.batch_metrics = {"loss_ae": loss_ae, "loss_kld": loss_kld, "loss": loss}
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)

    def on_loader_end(self, runner):
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

    def predict_batch(self, batch):
        random_latent_vectors = torch.randn(1, self.model.hid_features).to(self.device)
        generated_images = self.model.decoder(random_latent_vectors).detach()
        return generated_images

runner = CustomRunner("./logs", "cpu")
runner.run()
# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0].cpu().numpy().reshape(28, 28))

CV - MNIST multistage finetuning

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.contrib.datasets import MNIST
from catalyst.data.transforms import ToTensor


class CustomRunner(dl.IRunner):
    def __init__(self, logdir, device):
        super().__init__()
        self._logdir = logdir
        self._device = device

    def get_engine(self):
        return dl.DeviceEngine(self._device)

    def get_loggers(self):
        return {
            "console": dl.ConsoleLogger(),
            "csv": dl.CSVLogger(logdir=self._logdir),
            "tensorboard": dl.TensorboardLogger(logdir=self._logdir),
        }

    @property
    def stages(self):
        return ["train_freezed", "train_unfreezed"]

    def get_stage_len(self, stage: str) -> int:
        return 3

    def get_loaders(self, stage: str):
        loaders = {
            "train": DataLoader(
                MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
            ),
            "valid": DataLoader(
                MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
            ),
        }
        return loaders

    def get_model(self, stage: str):
        model = (
            self.model
            if self.model is not None
            else nn.Sequential(nn.Flatten(), nn.Linear(784, 128), nn.ReLU(), nn.Linear(128, 10))
        )
        if stage == "train_freezed":
            # freeze layer
            utils.set_requires_grad(model[1], False)
        else:
            utils.set_requires_grad(model, True)
        return model

    def get_criterion(self, stage: str):
        return nn.CrossEntropyLoss()

    def get_optimizer(self, stage: str, model):
        if stage == "train_freezed":
            return optim.Adam(model.parameters(), lr=1e-3)
        else:
            return optim.SGD(model.parameters(), lr=1e-1)

    def get_scheduler(self, stage: str, optimizer):
        return None

    def get_callbacks(self, stage: str):
        return {
            "criterion": dl.CriterionCallback(
                metric_key="loss", input_key="logits", target_key="targets"
            ),
            "optimizer": dl.OptimizerCallback(metric_key="loss"),
            # "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"),
            # "accuracy": dl.AccuracyCallback(
            #     input_key="logits", target_key="targets", topk_args=(1, 3, 5)
            # ),
            # "classification": dl.PrecisionRecallF1SupportCallback(
            #     input_key="logits", target_key="targets", num_classes=10
            # ),
            # "confusion_matrix": dl.ConfusionMatrixCallback(
            #     input_key="logits", target_key="targets", num_classes=10
            # ),
            "checkpoint": dl.CheckpointCallback(
                self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3
            ),
        }

    def handle_batch(self, batch):
        x, y = batch
        logits = self.model(x)

        self.batch = {
            "features": x,
            "targets": y,
            "logits": logits,
        }

runner = CustomRunner("./logs", "cpu")
runner.run()

CV - MNIST multistage finetuning (distributed)

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.contrib.datasets import MNIST
from catalyst.data.transforms import ToTensor


class CustomRunner(dl.IRunner):
    def __init__(self, logdir):
        super().__init__()
        self._logdir = logdir

    def get_engine(self):
        return dl.DistributedDataParallelEngine()

    def get_loggers(self):
        return {
            "console": dl.ConsoleLogger(),
            "csv": dl.CSVLogger(logdir=self._logdir),
            "tensorboard": dl.TensorboardLogger(logdir=self._logdir),
        }

    @property
    def stages(self):
        return ["train_freezed", "train_unfreezed"]

    def get_stage_len(self, stage: str) -> int:
        return 3

    def get_loaders(self, stage: str):
        loaders = {
            "train": DataLoader(
                MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
            ),
            "valid": DataLoader(
                MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
            ),
        }
        return loaders

    def get_model(self, stage: str):
        model = nn.Sequential(nn.Flatten(), nn.Linear(784, 128), nn.ReLU(), nn.Linear(128, 10))
        if stage == "train_freezed":  # freeze layer
            utils.set_requires_grad(model[1], False)
        else:
            utils.set_requires_grad(model, True)
        return model

    def get_criterion(self, stage: str):
        return nn.CrossEntropyLoss()

    def get_optimizer(self, stage: str, model):
        if stage == "train_freezed":
            return optim.Adam(model.parameters(), lr=1e-3)
        else:
            return optim.SGD(model.parameters(), lr=1e-1)

    def get_callbacks(self, stage: str):
        return {
            "criterion": dl.CriterionCallback(
                metric_key="loss", input_key="logits", target_key="targets"
            ),
            "optimizer": dl.OptimizerCallback(metric_key="loss"),
            "accuracy": dl.AccuracyCallback(
                input_key="logits", target_key="targets", topk_args=(1, 3, 5)
            ),
            "classification": dl.PrecisionRecallF1SupportCallback(
                input_key="logits", target_key="targets", num_classes=10
            ),
            # catalyst[ml] required ``pip install catalyst[ml]``
            # "confusion_matrix": dl.ConfusionMatrixCallback(
            #     input_key="logits", target_key="targets", num_classes=10
            # ),
            "checkpoint": dl.CheckpointCallback(
                self._logdir,
                loader_key="valid",
                metric_key="loss",
                minimize=True,
                save_n_best=3,
                # here is the main trick:
                load_on_stage_start={
                    "model": "best",
                    "global_epoch_step": "last",
                    "global_batch_step": "last",
                    "global_sample_step": "last",
                },
            ),
            "verbose": dl.TqdmCallback(),
        }

    def handle_batch(self, batch):
        x, y = batch
        logits = self.model(x)

        self.batch = {
            "features": x,
            "targets": y,
            "logits": logits,
        }


if __name__ == "__main__":
    runner = CustomRunner("./logs")
    runner.run()

AutoML - hyperparameters optimization with Optuna

import os
import optuna
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST


def objective(trial):
    lr = trial.suggest_loguniform("lr", 1e-3, 1e-1)
    num_hidden = int(trial.suggest_loguniform("num_hidden", 32, 128))

    loaders = {
        "train": DataLoader(
            MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32
        ),
        "valid": DataLoader(
            MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32
        ),
    }
    model = nn.Sequential(
        nn.Flatten(), nn.Linear(784, num_hidden), nn.ReLU(), nn.Linear(num_hidden, 10)
    )
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()

    runner = dl.SupervisedRunner(input_key="features", output_key="logits", target_key="targets")
    runner.train(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        loaders=loaders,
        callbacks={
            "accuracy": dl.AccuracyCallback(
                input_key="logits", target_key="targets", num_classes=10
            ),
            # catalyst[optuna] required ``pip install catalyst[optuna]``
            "optuna": dl.OptunaPruningCallback(
                loader_key="valid", metric_key="accuracy01", minimize=False, trial=trial
            ),
        },
        num_epochs=3,
    )
    score = runner.callbacks["optuna"].best_score
    return score

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.MedianPruner(
        n_startup_trials=1, n_warmup_steps=0, interval_steps=1
    ),
)
study.optimize(objective, n_trials=3, timeout=300)
print(study.best_value, study.best_params)

Features

  • Universal train/inference loop.
  • Configuration files for model and data hyperparameters.
  • Reproducibility – all source code and environment variables are saved.
  • Callbacks – reusable train/inference pipeline parts with easy customization.
  • Training stages support.
  • Deep Learning best practices: SWA, AdamW, Ranger optimizer, OneCycle, and more.
  • Workflow best practices: fp16 support, distributed training, slurm support.

Tests

All Catalyst code, features, and pipelines are fully tested. We also have our own catalyst-codestyle.

During testing, we train a variety of different models: image classification, image segmentation, text classification, GANs, and much more. We then compare their convergence metrics in order to verify the correctness of the training procedure and its reproducibility.

As a result, Catalyst provides fully tested and reproducible best practices for your deep learning research and development.

Catalyst

Documentation

Notebooks

Notable Blog Posts

Talks

Projects

Examples, Notebooks, and Starter Kits

Competitions

Research Papers

Toolkits

See other projects at the GitHub dependency graph.

If your project implements a paper, a notable use-case/tutorial, or a Kaggle competition solution, or if your code simply presents interesting results and uses Catalyst, we would be happy to add your project to the list above! Do not hesitate to send us a PR with a brief description of the project similar to the above.

Community

Contribution Guide

We appreciate all contributions. If you are planning to contribute back bug-fixes, there is no need to run that by us; just send a PR. If you plan to contribute new features, new utility functions, or extensions, please open an issue first and discuss it with us.

User Feedback

We've created feedback@catalyst-team.com as an additional channel for user feedback.

  • If you like the project and want to thanks us, this the right place.
  • If you would like to start a collaboration between your team and Catalyst team to improve Deep Learning R&D, you are always welcome.
  • If you just don't like Github Issues and this prefer email, feel free to email us.
  • Finally, if you do not like something, please, share it with us and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Acknowledgments

Since the beginning of the Сatalyst development, a lot of people have influenced it in a lot of different ways.

Catalyst.Team

Catalyst.Contributors

Trusted by

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Accelerated deep learning R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}