- Parameter search
- Run
forest.py
on a parameter grid - Visualize network features for each parameter set, and choose the best network
- Randomizations
msgPath: /nfs/apps/bin/msgsteiner9
pythPath: /nfs/apps/python2.7/bin/python
forestPath: /nfs/latdata/iamjli/alex/PCSF_analysis/bin/forest.py
projectPath: /nfs/latdata/iamjli/alex/results/human_binned_weights/
terminals: /nfs/latdata/iamjli/alex/data/toxicity_screen_human_prizes.tsv
interactome: /nfs/latdata/iamjli/alex/data/interactome/iRefIndex_v13_MIScore_interactome.txt
# Parameter grid
w: 1,2,3,4
beta: 3,6,9,12
D: 8
mu: 3e-04,1e-03,3e-03,1e-02,3e-02
Run forest.py
for all parameter sets, with optional parameter for specifying the yaml file:
python run_PCSF_param_sweep.py [yaml_file]
Run summarization scripts and visualize parameter grid results:
python PCSF_param_selection.py [yaml_file]
This also restructures the project directory. Results found in param_search/summary/
. Choose best looking parameter set, and run randomization scripts:
python run_PCSF_randomizations.py W_3_BETA_3_D_7_mu_1e-05 [yaml_file]
Finally, summarize randomization results:
python randomizations2subnetworks.py
This script also performs community clustering (Louvain), finds GO terms for subclusters, and create output files for visualization in Cytpscape.
TODO:
- script that fetches GO terms needs to handle empty responses
- restructure randomization->summary steps so that more than one randomization can be run