/hrm-ml

Supplementary materials for enabling reproducible study

Primary LanguageHTML

HRM-ML Paper

This repository provides the supplementary materials for the following study:

Precise prediction of dual-species synthetic community structure with high-resolution melting curve and machine learning authored by Chun-Hui Gao, Jiaqi He, Bin Cao, Huan He, Rui Zhang, Cong Lan, Yichao Wu, and Peng Cai. In submission.

Read the contents

Compile by yourself

Requirements

This project depends on several Python modules and R packages.

  • Python
    • scikit-learn
    • numpy
    • pandas

Using conda.

conda create -n hrm-ml
conda activate hrm-ml
conda install scikit-learn numpy pandas
  • R
    • tidyverse
    • tidymodels
    • mcmodel: in GitHub.

Using pak to install.

install.packages("pak")
pak::pak("tidyverse")
pak::pak("tidymodels")
pak::pak("gaospecial/mcmodel")

Compile

Using RStudio.

git clone https://github.com/gaospecial/hrm-ml
cd hrm-ml

Open *.Rproj file with RStudio, and press <SHIFT> + <CMD> + B to compile the book.