This is the offical implementation of "PalQuant: Accelerating High-precision Networks on Low-precision Accelerators" in ECCV 2022
git clone git@github.com:huqinghao/PalQuant.git
cd PalQuant
pip install -r requirements.txt
To train resnet-18 with 4-bit weights and activations, PalQuant trains a wide 2-bit resnet-18 with group=2:
python main.py --data your-imagenet-data-path --visible_gpus '0,1,2,3' --workers 20 \
--arch 'resnet18_quant' --epochs 90 --groups 2 --weight_levels 4 --lr_m 0.1 --lr_q 0.0001 \
-b 256 --act_levels 4 --log_dir "../results/resnet-18/W2A2G2/"
Here weight_levels and activations levels equals
We have uploaded the training checkpoint to the Baidu Cloud and Google Storge. To test the resnet-18 model, download model from BaiduNetdisk(extract code: quan), and run:
python main.py --data your-imagenet-data-path --visible_gpus '0' --workers 20 \
--arch 'resnet18_quant' --groups 2 --weight_levels 4 -b 256 --act_levels 4 \
--evaluate --model the-model-to-eval
@inproceedings{PalQuant2021,
author = {Qinghao Hu and Gang Li and Qiman Wu and Jian Cheng},
title = {PalQuant: Accelerating High-precision Networks on Low-precision Accelerators},
year = {2022},
booktile={European Conference on Computer Vision},
organization={Springer}
}
The code base is origined from EWGS, we thank their awesome work.