/peract_bimanual

Primary LanguagePythonApache License 2.0Apache-2.0

Perceiver-Actor^2: A Multi-Task Transformer for Bimanual Robotic Manipulation Tasks

Code style

This work extends previous work PerAct as well as RLBench for bimanual manipulation tasks.

The repository and documentation are still work in progress.

For the latest updates, see: bimanual.github.io

Installation

Prerequisites

The code PerAct^2 is built-off the PerAct which itself is built on the ARM repository by James et al. The prerequisites are the same as PerAct or ARM.

1. Environment

Install miniconda if not already present on the current system. You can use scripts/install_conda.sh for this step:

sudo apt install curl 

curl -L -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh 
./Miniconda3-latest-Linux-x86_64.sh

SHELL_NAME=`basename $SHELL`
eval "$($HOME/miniconda3/bin/conda shell.${SHELL_NAME} hook)"
conda init ${SHELL_NAME}
conda install mamba -c conda-forge
conda config --set auto_activate_base false

Next, create the rlbench environment and install the dependencies

conda create -n rlbench python=3.8
conda activate rlbench
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

2. Dependencies

You need to setup RBench, PyRep, and YARR. You can use scripts/install_dependencies.sh to do so See Installation for details.

./scripts/install_dependencies.sh

Pre-Generated Datasets

Please checkout the website for pre-generated RLBench demonstrations. If you directly use these datasets, you don't need to run tools/bimanual_data_generator.py from RLBench. Using these datasets will also help reproducibility since each scene is randomly sampled in data_generator_bimanual.py.

Acknowledgements

This repository uses code from the following open-source projects:

ARM

Original: https://github.com/stepjam/ARM
License: ARM License
Changes: Data loading was modified for PerAct. Voxelization code was modified for DDP training.

PerceiverIO

Original: https://github.com/lucidrains/perceiver-pytorch
License: MIT
Changes: PerceiverIO adapted for 6-DoF manipulation.

ViT

Original: https://github.com/lucidrains/vit-pytorch
License: MIT
Changes: ViT adapted for baseline.

LAMB Optimizer

Original: https://github.com/cybertronai/pytorch-lamb
License: MIT
Changes: None.

OpenAI CLIP

Original: https://github.com/openai/CLIP
License: MIT
Changes: Minor modifications to extract token and sentence features.

Thanks for open-sourcing!

Licenses

Release Notes

Update 2024-07-10

Initial release

Citations

PerAct^2

@misc{grotz2024peract2,
      title={PerAct2: Benchmarking and Learning for Robotic Bimanual Manipulation Tasks}, 
      author={Markus Grotz and Mohit Shridhar and Tamim Asfour and Dieter Fox},
      year={2024},
      eprint={2407.00278},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2407.00278}, 
}

PerAct

@inproceedings{shridhar2022peract,
  title     = {Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation},
  author    = {Shridhar, Mohit and Manuelli, Lucas and Fox, Dieter},
  booktitle = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
  year      = {2022},
}

C2FARM

@inproceedings{james2022coarse,
  title={Coarse-to-fine q-attention: Efficient learning for visual robotic manipulation via discretisation},
  author={James, Stephen and Wada, Kentaro and Laidlow, Tristan and Davison, Andrew J},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13739--13748},
  year={2022}
}

PerceiverIO

@article{jaegle2021perceiver,
  title={Perceiver io: A general architecture for structured inputs \& outputs},
  author={Jaegle, Andrew and Borgeaud, Sebastian and Alayrac, Jean-Baptiste and Doersch, Carl and Ionescu, Catalin and Ding, David and Koppula, Skanda and Zoran, Daniel and Brock, Andrew and Shelhamer, Evan and others},
  journal={arXiv preprint arXiv:2107.14795},
  year={2021}
}

RLBench

@article{james2020rlbench,
  title={Rlbench: The robot learning benchmark \& learning environment},
  author={James, Stephen and Ma, Zicong and Arrojo, David Rovick and Davison, Andrew J},
  journal={IEEE Robotics and Automation Letters},
  volume={5},
  number={2},
  pages={3019--3026},
  year={2020},
  publisher={IEEE}
}

Questions or Issues?

Please file an issue with the issue tracker.