Clean, Robust, and Unified implementation of classical Deep Reinforcement Learning Algorithms
Recommended Resources for DRL
DQN: Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533.
Double DQN: Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2016, 30(1).
PER: Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay[J]. arXiv preprint arXiv:1511.05952, 2015.
PPO: Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.
DDPG: Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.
TD3: Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic methods[C]//International conference on machine learning. PMLR, 2018: 1587-1596.
SAC: Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International conference on machine learning. PMLR, 2018: 1861-1870.
ASL: Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
Training Curves of my Code:
Pong |
Enduro |
|
|
CartPole |
LunarLander |
|
|
Pendulum |
LunarLanderContinuous |
|
|