- Getting ready for a 1.0 release
- Released 0.9.2 as a gem
- 0.9.1 removed a rare threading bug and cleanup on error
- Added support for soft filters (request by Brad Chapman)
- The outputter now writes (properly) in parallel with the parser
- bio-vcf turns any VCF into JSON with header information, and allows you to pipe that JSON directly into any JSON supporting language, including Python and Javascript!
Bio-vcf is a new generation VCF parser, filter and converter. Bio-vcf is not only very fast for genome-wide (WGS) data, it also comes with a really nice filtering, evaluation and rewrite language and it can output any type of textual data, including VCF header and contents in RDF and JSON.
So, why would you use bio-vcf over other parsers? Because
- Bio-vcf is fast and scales on multi-core computers
- Bio-vcf has an expressive filtering and evaluation language
- Bio-vcf has great multi-sample support
- Bio-vcf has multiple global filters and sample filters
- Bio-vcf can access any VCF format
- Bio-vcf can parse and query the VCF header (META data)
- Bio-vcf can do calculations on fields
- Bio-vcf allows for genotype processing
- Bio-vcf has support for set analysis
- Bio-vcf has sane error handling
- Bio-vcf can convert any VCF to any output, including tabular data, BED, HTML, LaTeX, RDF, JSON and JSON-LD and even other VCFs by using (erb) templates
- Bio-vcf has soft filters
Bio-vcf has better performance than other tools because of lazy parsing, multi-threading, and useful combinations of (fancy) command line filtering (who says Ruby is slow?). Adding cores, bio-vcf just does better. The more complicated the filters, the larger the gain. First a base line test to show IO performance
time cat ESP6500SI-V2-SSA137.GRCh38-liftover.*.vcf|wc
1987143 15897724 1003214613
real 0m7.823s
user 0m7.002s
sys 0m2.972s
Next run this 1Gb data with bio-vcf effectively using 5 cores on AMD Opteron(tm) Processor 6174 using Linux
time cat ESP6500SI-V2-SSA137.GRCh38-liftover.*.vcf|./bin/bio-vcf -iv --num-threads 8 --filter 'r.info.cp.to_f>0.3' > /dev/null
real 0m32.491s
user 2m34.767s
sys 0m12.733s
The same with SnpSift v4.0 takes
time cat ESP6500SI-V2-SSA137.GRCh38-liftover.*.vcf|java -jar snpEff/SnpSift.jar filter "( CP>0.3 )" > /dev/null
real 12m36.121s
user 12m53.273s
sys 0m9.913s
This means that on this machine bio-vcf is 24x faster than SnpSift even for a simple filter. In fact, bio-vcf is perfect for complex filters and parsing large data files on powerful machines. Parsing a 650 Mb GATK Illumina Hiseq VCF file and evaluating the results into a BED format on a 16 core machine takes
time bio-vcf --num-threads 16 --filter 'r.chrom.to_i>0 and r.chrom.to_i<21 and r.qual>50' --sfilter '!s.empty? and s.dp>20' --eval '[r.chrom,r.pos,r.pos+1]' < test.large2.vcf > test.out.3
real 0m47.612s
user 8m18.234s
sys 0m5.039s
which shows decent core utilisation (10x). Running gzip compressed VCF files of 30+ Gb has similar performance gains.
To view some complex filters on an 80Gb SNP file check out a GTEx exercise.
Use zcat (or even better pigz which is multi-core itself) to pipe such gzipped (vcf.gz) files into bio-vcf, e.g.
zcat huge_file.vcf.gz| bio-vcf --num-threads 36 --filter 'r.chrom.to_i>0 and r.chrom.to_i<21 and r.qual>50'
--sfilter '!s.empty? and s.dp>20'
--eval '[r.chrom,r.pos,r.pos+1]' > test.bed
bio-vcf comes with a sensible parser definition language (interestingly it is 100% Ruby), an embedded Ragel parser for INFO and FORMAT header definitions, as well as primitives for set analysis. Few assumptions are made about the actual contents of the VCF file (field names are resolved on the fly), so bio-vcf should work with all VCF files.
To fetch all entries where all samples have depth larger than 20 and filter set to PASS use a sample filter
bio-vcf --sfilter 'sample.dp>20 and rec.filter=="PASS"' < file.vcf
or with a regex
bio-vcf --sfilter 'sample.dp>20 and rec.filter !~ /LowQD/' < file.vcf
To only filter on some samples number 0 and 3:
bio-vcf --sfilter-samples 0,3 --sfilter 's.dp>20' < file.vcf
Where 's.dp' is the shorter name for 'sample.dp'.
It is also possible to specify sample names, or info fields:
For example, to filter somatic data
bio-vcf --filter 'rec.info.dp>5 and rec.alt.size==1 and rec.tumor.bq[rec.alt]>30 and rec.tumor.mq>20' < file.vcf
To output specific fields in tabular (and HTML, XML or LaTeX) format use the --eval switch, e.g.,
bio-vcf --eval 'rec.alt+"\t"+rec.info.dp+"\t"+rec.tumor.gq.to_s' < file.vcf
In fact, if the result is an Array the output gets tab dilimited, so the nicer version is
bio-vcf --eval '[r.alt,r.info.dp,r.tumor.gq.to_s]' < file.vcf
To output the DP values of every sample that has a depth larger than 100:
bio-vcf -i --sfilter 's.dp>100' --seval 's.dp' < file.vcf
1 10257 159 242 249 249 186 212 218
1 10291 165 249 249 247 161 163 189
1 10297 182 246 250 246 165 158 183
1 10303 198 247 248 248 172 157 182
(etc.)
Where -i ignores missing samples. Pick up sample allele depth
bio-vcf -i --seval 's.ad.to_s'
1 10257 [151, 8] [219, 22] [227, 22] [226, 22] [166, 18] [185, 27] [201, 15]
1 10291 [145, 16] [218, 26] [214, 30] [213, 32] [122, 36] [131, 27] [156, 31]
1 10297 [155, 18] [218, 23] [219, 26] [207, 30] [137, 20] [124, 27] [151, 27]
1 10303 [169, 25] [211, 31] [214, 28] [214, 32] [146, 17] [123, 23] [156, 22]
To get the alt depth per sample
bio-vcf -i --seval 's.ad[1]'
1 10257 8 22 22 22 18 27 15
1 10291 16 26 30 32 36 27 31
1 10297 18 23 26 30 20 27 27
1 10303 25 31 28 32 17 23 22
To calculate percentage non-reference (PNR) alt frequencies from s.ad which is sample (alt dp)/(ref dp + alt dp)
bio-vcf -i --seval 's.ad[1].to_f/(s.ad[0]+s.ad[1])'
1 10257 0.050314465408805034 0.0912863070539419 0.08835341365461848 0.088709677419354840.09782608695652174 0.12735849056603774 0.06944444444444445
1 10291 0.09937888198757763 0.10655737704918032 0.12295081967213115 0.1306122448979592 0.22784810126582278 0.17088607594936708 0.1657754010695187
note the floating point conversion .to_f is needed, otherwise you get an integer division. To account for multiple alleles
bio-vcf -i --eval 'r.ref+">"+r.alt[0]' --seval 'tot=s.ad.reduce(:+) ; (tot-s.ad[0].to_f)/tot' --set-header "mutation,#samples"
mutation Original s1t1 s2t1 s3t1 s1t2 s2t2 s3t2
A>C 0.050314465408805034 0.0912863070539419 0.08835341365461848 0.08870967741935484 0.09782608695652174 0.12735849056603774 0.06944444444444445
C>T 0.09937888198757763 0.10655737704918032 0.12295081967213115 0.1306122448979592 0.22784810126582278 0.17088607594936708 0.1657754010695187
To output DP ang GQ values for tumor normal:
bio-vcf --filter 'r.normal.dp>=7 and r.tumor.dp>=5' --seval '[s.dp,s.gq]' < freebayes.vcf
17 45235620 22 139.35 20 0
17 45235635 20 137.224 14 41.5688
17 45235653 18 146.509 12 146.509
17 45247354 32 0 9 6.59312
17 45247362 27 0 6 110.097
To parse and output genotype
bio-vcf -iq --sfilter 's.dp>=20 and s.gq>=20' --ifilter-samples 's.gt!="0/0"' --seval s.gt < test/data/input/multisample.vcf
1 10257 0/0 0/0 0/0 0/0 0/0 0/1 0/0
1 10291 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 10297 0/1 0/1 0/1 0/0 0/0 0/1 0/1
1 12783 0/1 0/1 0/1 0/1 0/1 0/1 0/1
And use --set-header if you want to add a header
bio-vcf -iq --set-header 'chr,pos,#samples' --sfilter 's.dp>=20 and s.gq>=20' --ifilter-samples 's.gt!="0/0"' --seval s.gt < test/data/input/multisample.vcf
chr pos orig s1t1 s2t1 s3t1 s1t2 s2t2 s3t2
1 10257 0/0 0/0 0/0 0/0 0/0 0/1 0/0
1 10291 0/1 0/1 0/1 0/1 0/1 0/1 0/1
(etc)
where #samples gets expanded.
Most filter and eval commands can be used at the same time. Special set commands exit for filtering and eval. When a set is defined, based on the sample name, you can apply filters on the samples inside the set, outside the set and over all samples. E.g.
So, why would you use bio-vcf instead of rolling out your own Perl/Python/other ad-hoc script? I think the reason should be that there is less chance of mistakes because of Bio-vcf's clear filtering language and sensible built-in validation. The second reason would be speed. Bio-vcf's multi-threading capability gives it great and hard to replicate performance.
Also note you can use bio-table to filter/transform data further and convert to other formats, such as RDF.
The VCF format is commonly used for variant calling between NGS samples. The fast parser needs to carry some state, recorded for each file in VcfHeader, which contains the VCF file header. Individual lines (variant calls) first go through a raw parser returning an array of fields. Further (lazy) parsing is handled through VcfRecord.
At this point the filter is pretty generic with multi-sample support. If something is not working, check out the feature descriptions and the source code. It is not hard to add features. Otherwise, send a short example of a VCF statement you need to work on.
Note that you need Ruby 2.x or later. The 2.x Ruby series also give a performance improvement. Bio-vcf will show the Ruby version when typing the command 'bio-vcf -h'.
To install bio-vcf with gem:
gem install bio-vcf
bio-vcf -h
Get the version of the VCF file
bio-vcf -q --eval-once header.version < file.vcf
4.1
Get the column headers
bio-vcf -q --eval-once 'header.column_names.join(",")' < file.vcf
CHROM,POS,ID,REF,ALT,QUAL,FILTER,INFO,FORMAT,NORMAL,TUMOR
Get the sample names
bio-vcf -q --eval-once 'header.samples.join(",")' < file.vcf
NORMAL,TUMOR
Alternatively use the command line switch for --names, e.g.
bio-vcf --names < file.vcf
NORMAL,TUMOR
Get information from the header (META)
bio-vcf -q --skip-header --eval-once 'header.meta["GATKCommandLine"]' < gatk_exome.vcf
The 'fields' array contains unprocessed data (strings). Print first five raw fields
bio-vcf --eval 'fields[0..4]' < file.vcf
Add a filter to display the fields on chromosome 12
bio-vcf --filter 'fields[0]=="12"' --eval 'fields[0..4]' < file.vcf
It gets better when we start using processed data, represented by an object named 'rec'. Position is a value, so we can filter a range
bio-vcf --filter 'rec.chrom=="12" and rec.pos>96_641_270 and rec.pos<96_641_276' < file.vcf
The shorter name for 'rec.chrom' is 'r.chrom', so you may write
bio-vcf --filter 'r.chrom=="12" and r.pos>96_641_270 and r.pos<96_641_276' < file.vcf
To ignore and continue parsing on missing data use the --ignore-missing (-i) and or --quiet (-q) switches
bio-vcf -i --filter 'r.chrom=="12" and r.pos>96_641_270 and r.pos<96_641_276' < file.vcf
Info fields are referenced by
bio-vcf --filter 'rec.info.dp>100 and rec.info.readposranksum<=0.815' < file.vcf
(alternatively you can use the indexed rec.info['DP'] and list INFO fields with rec.info.fields).
Subfields defined by rec.format:
bio-vcf --filter 'rec.tumor.ss != 2' < file.vcf
Output
bio-vcf --filter 'rec.tumor.gq>30'
--eval '[rec.ref,rec.alt,rec.tumor.bcount,rec.tumor.gq,rec.normal.gq]'
< file.vcf
Show the count of the bases that were scored as somatic
bio-vcf --eval 'rec.alt+"\t"+rec.tumor.bcount.split(",")[["A","C","G","T"].index(rec.alt)]+
"\t"+rec.tumor.gq.to_s' < file.vcf
Actually, we have a convenience implementation for bcount, so this is the same
bio-vcf --eval 'rec.alt+"\t"+rec.tumor.bcount[rec.alt].to_s+"\t"+rec.tumor.gq.to_s'
< file.vcf
Filter on the somatic results that were scored at least 4 times
bio-vcf --filter 'rec.alt.size==1 and rec.tumor.bcount[rec.alt]>4' < test.vcf
Similar for base quality scores
bio-vcf --filter 'rec.alt.size==1 and rec.tumor.amq[rec.alt]>30' < test.vcf
Filter out on sample values
bio-vcf --sfilter 's.dp>20' < test.vcf
To filter missing on samples:
bio-vcf --filter "rec.s3t2?" < file.vcf
or for all
bio-vcf --filter "rec.missing_samples?" < file.vcf
To set a soft filter, i.e. the filter column is updated
bio-vcf --add-filter LowQD --filter 'r.tumor.dp<5' < test/data/input/somaticsniper.vcf |bio-vcf --eval '[r.chr,r.pos,r.tumor.dp,r.filter]' --filter 'r.filter.index("LowQD")'
may render something like
1 46527674 4 LowQD
1 108417572 4 LowQD
1 155449089 4 LowQD
1 169847826 4 LowQD
1 203098164 3 LowQD
2 39213209 4 LowQD
Likewise you can check for record validity
bio-vcf --filter "not rec.valid?" < file.vcf
which, at this point, simply counts the number of fields.
If your samples have other names you can fetch genotypes for that sample with
bio-vcf --eval "rec.sample['Original'].gt" < file.vcf
Or read depth for another
bio-vcf --eval "rec.sample['s3t2'].dp" < file.vcf
Better even, you can access samples directly with
bio-vcf --eval "rec.sample.original.gt" < file.vcf
bio-vcf --eval "rec.sample.s3t2.dp" < file.vcf
And even better because of Ruby magic
bio-vcf --eval "rec.original.gt" < file.vcf
bio-vcf --eval "rec.s3t2.dp" < file.vcf
Note that only valid method names in lower case get picked up this way. Also by convention normal is sample 1 and tumor is sample 2.
Even shorter r is an alias for rec
bio-vcf --eval "r.original.gt" < file.vcf
bio-vcf --eval "r.s3t2.dp" < file.vcf
Note: special functions are not yet implemented! Look below for genotype processing which has indexing in 'gti'.
Sometime you want to use a special function in a filter. For example percentage variant reads can be defined as [a,c,g,t] with frequencies against sample read depth (dp) as [0,0.03,0.47,0.50]. Filtering would with a special function, which we named freq
bio-vcf --sfilter "s.freq(2)>0.30" < file.vcf
which is equal to
bio-vcf --sfilter "s.freq.g>0.30" < file.vcf
To check for ref or variant frequencies use more sugar
bio-vcf --sfilter "s.freq.var>0.30 and s.freq.ref<0.10" < file.vcf
For all includes var should be identical for set analysis except for cartesian. So when --include is defined test for identical var and in the case of cartesian one unique var, when tested.
ref should always be identical across samples.
One clinical variant DbSNP example
bio-vcf --eval '[rec.id,rec.chr,rec.pos,rec.alt,rec.info.sao,rec.info.CLNDBN]' < clinvar_20140303.vcf
renders
1 1916905 rs267598254 A 3 Malignant_melanoma
1 1916906 rs267598255 A 3 Malignant_melanoma
1 1959075 rs121434580 C 1 Generalized_epilepsy_with_febrile_seizures_plus_type_5
1 1959699 rs41307846 A 1 Generalized_epilepsy_with_febrile_seizures_plus_type_5|Epilepsy\x2c_juvenile_myoclonic_7|Epilepsy\x2c_idiopathic_generalized_10
1 1961453 rs142619552 T 3 Malignant_melanoma
1 2160299 rs387907304 G 0 Shprintzen-Goldberg_syndrome
1 2160305 rs387907306 A T 0 Shprintzen-Goldberg_syndrome,Shprintzen-Goldberg_syndrome
1 2160306 rs387907305 A T 0 Shprintzen-Goldberg_syndrome,Shprintzen-Goldberg_syndrome
1 2160308 rs397514590 T 0 Shprintzen-Goldberg_syndrome
1 2160309 rs397514589 A 0 Shprintzen-Goldberg_syndrome
bio-vcf allows for set analysis. With the complement filter, for example, samples are selected that evaluate to true, all others should evaluate to false. For this we create three filters, one for all samples that are included (the --ifilter or -if), for all samples that are excluded (the --efilter or -ef) and for any sample (the --sfilter or -sf). So i=include (OR filter), e=exclude and s=any sample (AND filter).
The equivalent of the union filter is by using the --sfilter, so
bio-vcf --sfilter 's.dp>20'
Filters DP on all samples and is true if all samples match the criterium (AND). To filter on a subset you can add a selector
bio-vcf --sfilter-samples 0,1,4 --sfilter 's.dp>20'
For set analysis there are the additional ifilter (include) and efilter (exclude). Where sfilter represents an ALL match, the ifilter represents an ANY match, i.e., it is true if one of the samples matches the criterium (OR). To filter on samples 0,1,4 and output the gq values
bio-vcf -i --ifilter-samples 0,1,4 --ifilter 's.gq<10 or s.gq==99' --seval s.gq
1 14907 99 99 99 99 99 99 99
1 14930 99 99 99 99 99 99 99
1 14933 1 99 99 39 99 99 99
1 15190 99 99 91 99 99 99 99
1 15211 99 99 99 99 99 99 99
The equivalent of the complement filter is by specifying what samples to include, here with a regex and define filters on the included and excluded samples (the ones not in ifilter-samples) and the
./bin/bio-vcf -i --sfilter 's.dp>20' --ifilter-samples 2,4 --ifilter 's.gt==r.s1t1.gt'
To print out the GT's add --seval
bio-vcf -i --sfilter 's.dp>20' --ifilter-samples 2,4 --ifilter 's.gt==r.s1t1.gt' --seval 's.gt'
1 14673 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 14907 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 14930 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 15211 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 15274 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1 16103 0/1 0/1 0/1 0/1 0/1 0/1 0/1
To set an additional filter on the excluded samples:
bio-vcf -i --ifilter-samples 0,1,4 --ifilter 's.gt==rec.s1t1.gt and s.gq>10' --seval s.gq --efilter 's.gq==99'
Etc. etc. Any combination of sfilter, ifilter and efilter is possible. Currently the efilter is an ALL filter (AND), i.e. all excluded samples need to match the criterium.
The following regular expression matches are not yet implemented:
In the near future it is also possible to select samples on a regex (here select all samples where the name starts with s3)
bio-vcf --isample-regex '/^s3/' --ifilter 's.dp>20'
bio-vcf --include /s3.+/ --sfilter 'dp>20' --ifilter 'gt==s3t1.gt' --efilter 'gt!=s3t1.gt'
--set-intersect include=true
bio-vcf --include /s3.+/ --sample-regex /^t2/ --sfilter 'dp>20' --ifilter 'gt==s3t1.gt'
--set-catesian one in include=true, rest=false
bio-vcf --unique-sample (any) --include /s3.+/ --sfilter 'dp>20' --ifilter 'gt!="0/0"'
With the filter commands you can use --ignore-missing to skip errors.
The sample GT field counts 0 as the reference and numbers >1 as indexed ALT values. The field is simply built up using a slash or | as a separator (e.g., 0/1, 0|2, ./. are valid values). The standard field results in a string value
bio-vcf --seval s.gt
1 10665 ./. ./. 0/1 0/1 ./. 0/0 0/0
1 10694 ./. ./. 1/1 1/1 ./. ./. ./.
1 12783 0/1 0/1 0/1 0/1 0/1 0/1 0/1
1 15274 1/2 1/2 1/2 1/2 1/2 1/2 1/2
to access components of the genotype field we can use standard Ruby
bio-vcf --seval 's.gt.split(/\//)[0]'
1 10665 . . 0 0 . 0 0
1 10694 . . 1 1 . . .
1 12783 0 0 0 0 0 0 0
1 15274 1 1 1 1 1 1 1
or special functions, such as 'gti' which gives the genotype as an indexed value array
bio-vcf --seval 's.gti[0]'
1 10665 0 0 0 0
1 10694 1 1
1 12783 0 0 0 0 0 0 0
1 15274 1 1 1 1 1 1 1
and 'gts' as a nucleotide string array
bio-vcf --seval 's.gts'
1 10665 C C C C
1 10694 G G
1 12783 G G G G G G G
1 15274 G G G G G G G
where gts represents the indexed genotype on [ref] + [alt].
To convert combined genotypes into numbers, i.e., 0/0 -> 0, 0/1 -> 1, 1/1 -> 2, is useful for indexed fields giving information on, for example signficance, use
bio-vcf --seval '!s.empty? and s.gtindex'
11 58949455 0 1
11 65481082 0 1
11 94180424 0 1
11 121036021 0 1
Now you can index other fields, e.g. GL
./bin/bio-vcf --seval '[(!s.empty? ? s.gl[s.gtindex]:-1)]'
1 900057 1.0 1.0 0.994 1.0 1.0 -1 0.999 1.0 0.997 -1 0.994 0.989 -1 0.991 -1 0.972 0.992 1.0
shows a number of SNPs have been scored with high significance and a number are missing, here marked as -1.
These values can also be used in filters and output allele depth, for example
bio-vcf -vi --ifilter 'rec.original.gt!="0/1"' --efilter 'rec.original.gt=="0/0"' --seval 'rec.original.ad[s.gti[1]]'
1 10257 151 151 151 151 151 8 151
1 13302 26 10 10 10 10 10 10
1 13757 47 47 4 47 47 4 47
You can use the genotype index gti to fetch values from, for example, allele depth:
bio-vcf -vi --ifilter 'rec.original.gt!="0/1"' --efilter 'rec.original.gti[0]==0' --seval 'rec.original.ad[s.gti[1]]'
1 10257 151 151 151 151 151 8 151
1 13302 26 10 10 10 10 10 10
1 13757 47 47 4 47 47 4 47
Note, the use of lambda allows for sophisticated queries. You may need some expert advice here.
To count valid genotype field in samples you can do something like
bio-vcf --eval 'r.samples.count {|s| s.gt!="./."}'
A similar complex count would be
bio-vcf --eval '[r.chr,r.pos,r.samples.count { |s| (!s.empty? && s.gl[s.gtindex]==1.0) }]'
which tests for perfect SNPs scored (for example).
Sometime it pay to reorder the filter using a lambda. This is one example where the greedy sample counts are done only for those samples that match the other criteria:
./bin/bio-vcf --num-threads=1 --filter '(r.info.miss<0.05 and r.info.exp_freq_a1>0.05 and r.info.exp_freq_a1<0.95 and r.info.impinfo>0.7 and r.info.hw<1.0) ? lambda { found=r.samples.count { |s| (!s.empty? && s.gl[s.gtindex]==1.0) }.to_f; total=r.samples.count{|s| s.gt!="./."} ; found/total>0.7 and total-found<30 }.call : false)'
Add or modify the sample file name in the INFO fields:
bio-vcf --rewrite 'rec.info["sample"]="mytest"' < mytest.vcf
To remove/select 3 samples:
bio-vcf --samples 0,1,3 < mytest.vcf
You can also select samples by name (as long as they do not contain spaces)
bio-vcf --names < mytest.vcf
Original s1t1 s2t1 s3t1 s1t2 s2t2 s3t2
bio-vcf --samples "Original,s1t1,s3t1" < mytest.vcf
Filter on a BED file and annotate the gene name in the resulting VCF
bio-vcf -v --bed test/data/input/test.bed --rewrite 'rec.info["gene"]=bed[3]' < test/data/input/somaticsniper.vcf
You can use --rdf for turtle RDF output from simple one-liners, note the use of --id and --tags which includes the MAF record:
bio-vcf --id evs --rdf --tags '{"db:evs" => true, "seq:freq" => rec.info.maf[0]/100 }' < EVS.vcf
:evs_ch9_139266496_T seq:chr "9" .
:evs_ch9_139266496_T seq:pos 139266496 .
:evs_ch9_139266496_T seq:alt T .
:evs_ch9_139266496_T db:vcf true .
:evs_ch9_139266496_T db:evs true .
:evs_ch9_139266496_T seq:freq 0.419801 .
Also check out the more powerful templating system below.
It is possible to filter too! Pick out the rare variants with
bio-vcf --id evs --filter 'r.info.maf[0]<5.0' --rdf --tags '{"db:evs" => true, "seq:freq" => rec.info.maf[0]/100 }' < EVS.vcf
Similarly for GoNL
bio-vcf --id gonl --rdf --tags '{"db:gonl" => true, "seq:freq" => rec.info.af }' < GoNL.vcf
or without AF
bio-vcf --id gonl --rdf --tags '{"db:gonl" => true, "seq:freq" => (rec.info.ac.to_f/rec.info.an).round(2) }' < gonl_germline_overlap_r4.vcf
Also check out bio-table to convert tabular data to RDF.
To have more output options bio-vcf can use an ERB template for every match. This is a very flexible option that can output textual formats such as JSON, YAML, HTML and RDF. Examples are provided in ./templates. A JSON template could be
{
"seq:chr": "<%= rec.chrom %>" ,
"seq:pos": <%= rec.pos %> ,
"seq:ref": "<%= rec.ref %>" ,
"seq:alt": "<%= rec.alt[0] %>" ,
"seq:maf": <%= rec.info.maf[0] %> ,
"dp": <%= rec.info.dp %>
};
To get JSON, run with something like (combining with a filter)
bio-vcf --template template/vcf2json.erb --filter 'r.info.sao==1' < dbsnp.vcf
which renders
{
"seq:chr": "13" ,
"seq:pos": 35745475 ,
"seq:ref": "C" ,
"seq:alt": "T" ,
"seq:maf": 0.0151 ,
"dp": 86
};
Likewise for RDF output:
bio-vcf --template template/vcf2rdf.erb --filter 'r.info.sao==1' < dbsnp.vcf
renders the ERB template
<%
id = Turtle::mangle_identifier(['ch'+rec.chrom,rec.pos,rec.alt.join('')].join('_'))
%>
:<%= id %>
:query_id "<%= id %>",
seq:chr "<%= rec.chrom %>" ,
seq:pos <%= rec.pos %> ,
seq:ref "<%= rec.ref %>" ,
seq:alt "<%= rec.alt[0] %>" ,
seq:maf <%= (rec.info.maf[0]*100).round %> ,
seq:dp <%= rec.info.dp %> ,
db:vcf true .
into
:ch13_33703698_A
:query_id "ch13_33703698_A",
seq:chr "13" ,
seq:pos 33703698 ,
seq:ref "C" ,
seq:alt "A" ,
seq:maf 16 ,
seq:dp 92 ,
db:vcf true .
Note the calculated field value for maf. Be creative! You can write templates for csv, HTML, XML, LaTeX, RDF, JSON, YAML, JSON-LD, etc. etc.!
Templates can also print data as a header of the JSON/YAML/RDF output. For this use the '=' prefix with HEADER, BODY, FOOTER keywords in the template. A small example can be
=HEADER
<% require 'json' %>
{ "HEADER": {
"options": <%= options.to_h.to_json %>,
"files": <%= ARGV %>,
"version": "<%= BIOVCF_VERSION %>"
},
"BODY":[
=BODY
{
"seq:chr": "<%= rec.chrom %>" ,
"seq:pos": <%= rec.pos %> ,
"seq:ref": "<%= rec.ref %>" ,
"seq:alt": "<%= rec.alt[0] %>" ,
"dp": <%= rec.info.dp %>
},
=FOOTER
]
}
with
bio-vcf --template template/vcf2json.erb < dbsnp.vcf
may generate something like
{ "HEADER": {
"options": {"show_help":false,"source":"https://github.com/CuppenResearch/bioruby-vcf","version":"0.8.1-pre3 (Pjotr Prins)","date":"2014-11-26 12:51:36 +0000","thread_lines":40000,"template":"template/vcf2json.erb","skip_header":true},
"files": [],
"version": "0.8.1-pre3"
},
"BODY":[
{
"seq:chr": "1" ,
"seq:pos": 883516 ,
"seq:ref": "G" ,
"seq:alt": "A" ,
"dp":
},
{
"seq:chr": "1" ,
"seq:pos": 891344 ,
"seq:ref": "G" ,
"seq:alt": "A" ,
"dp": ,
},
]
}
Note that the template is not smart enough to remove the final comma from the last BODY element. To make it valid JSON that needs to be removed. A future version may add a parameter to the BODY element or a global rewrite function for this purpose. YAML and RDF have no such issue.
To get and put the full information from the header, simple use vcf.meta.to_json. See ./template/vcf2json_full_header.erb for an example. This meta information can also be used to output info fields and sample values on the fly! For an example, see the template at ./template/vcf2json_use_meta.erb and the generated output at ./test/data/regression/vcf2json_use_meta.ref.
This way, it is possible to write templates that can convert the content of any VCF file without prior knowledge to JSON, RDF, etc.
Simple statistics are available for REF>ALT changes:
./bin/bio-vcf -v --statistics < test/data/input/dbsnp.vcf
## ==== Statistics ==================================
G>A 59 45%
C>T 30 23%
A>G 5 4%
C>G 5 4%
C>A 5 4%
G>T 4 3%
T>C 4 3%
G>C 4 3%
T>A 3 2%
A>C 3 2%
A>T 2 2%
GTCCGACCGCTCC>G 1 1%
CGACCGCTCC>C 1 1%
T>TGGAGC 1 1%
C>CGTCTTCA 1 1%
TG>T 1 1%
AC>A 1 1%
Total 130
## ==================================================
For more exercises and examples see doc directory and the the feature section.
BioVcf can also be used as an API. The following code is basically what the command line interface uses (see ./bin/bio-vcf)
FILE.each_line do | line |
if line =~ /^##fileformat=/
# ---- We have a new file header
header = VcfHeader.new
header.add(line)
STDIN.each_line do | headerline |
if headerline !~ /^#/
line = headerline
break # end of header
end
header.add(headerline)
end
end
# ---- Parse VCF record line
# fields = VcfLine.parse(line,header.columns)
fields = VcfLine.parse(line)
rec = VcfRecord.new(fields,header)
#
# Do something with rec
#
end
Note that Ruby 2.x is required for Bio-vcf. JRuby works, but only in single threaded mode (for now).
The multi-threading creates temporary files using the system TMPDIR. This behaviour can be overridden by setting the environment variable.
Make sure to minimize expensive calculations by moving them backward. An 'and' statement is evaluated from left to right. With
fast_check and slow_check
slow_check only gets executed if fast_check is true.
For more complex filters use lambda inside a conditional
( fast_check ? lambda { slow_check }.call : false )
where slow_check is the slow section of your query. As is shown earlier in this document. Don't forget the .call!
Depending on your input data and the speed filters it may be useful to tweak the number of thread lines and/or to increase the timeout.
On really fast file systems for genome-wide sequencing try increasing --thread-lines to a value larger than 100_000. On the other hand if the computations are intensive (per line) reduce the number of thread-lines (try 10_000 and 1_000). If processes get killed that is the one to try.
For larger files set the timeout to 600, or so. --timeout 600.
Different values may show different core use on a machine.
To debug output use '-v --num-threads=1' for generating useful output. Also do not use the -i switch (ignore errors) when there are problems.
Multi-threaded bio-vcf writes into a temporary directory during processing. When a process gets interrupted for some reason the temporary directory may remain.
Information on the source tree, documentation, examples, issues and how to contribute, see
http://github.com/pjotrp/bioruby-vcf
If you use this software, please cite one of
- BioRuby: bioinformatics software for the Ruby programming language
- Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics
This Biogem is published at (http://biogems.info/index.html#bio-vcf)
Copyright (c) 2014 Pjotr Prins. See LICENSE.txt for further details.