/MMIL-Transformer

Primary LanguagePythonMIT LicenseMIT

Multi-level Multiple Instance Learning with Transformer for Whole Slide Image Classification

Project Info

This project is the official implementation of MMIL-Transformer proposed in paper Multi-level Multiple Instance Learning with Transformer for Whole Slide Image Classification

News

A new grouping method(MSA grouping) and the corresponding pre-trained weights will be updated soon.

Prerequisites

  • Python 3.8.10
  • Pytorch 1.12.1
  • torchmetrics 0.4.1
  • CUDA 11.6
  • numpy 1.24.2
  • einops 0.6.0
  • sklearn 1.2.2
  • h5py 3.8.0
  • pandas 2.0.0
  • nystrom_attention
  • argparse

Pretrained Weight

All test experiments were conducted 10 times to calculate the average ACC and AUC.

model name grouping method weight ACC AUC
TCGA_embed Embedding grouping HF link 93.15% 98.97%
TCGA_random Random grouping HF link 94.37% 99.04%
TCGA_random_with_subbags_0.75masked Random grouping + mask HF link 93.95% 99.02%
camelyon16_random Random grouping HF link 91.78% 94.07%
camelyon16_random_with_subbags_0.6masked Random grouping + mask HF link 93.41% 94.74%

Usage

Dataset

Preprocess TCGA Dataset

We use the same configuration of data preprocessing as DSMIL. Or you can directly download the feature vector they provided for TCGA.

Preprocess CAMELYON16 Dataset

We use CLAM to preprocess CAMELYON16 at 20x.

Preprocessed feature vector

Preprocess WSI is time consuming and difficult. We also provide processed feature vector for two datasets. Aforementioned works DSMIL and CLAM greatly simplified the preprocessing. Thanks again to their wonderful works!

Dataset Link Disk usage
TCGA HF link 16GB
CAMELYON16 HF link 20GB

Test the model

For TCGA testing:

python main.py \
--test {Your_Path_to_Pretrain} \
--num_test 10 \
--type TCGA \
--num_subbags 4 \
--mode {embed or random} \
--num_msg 1 \
--num_layers 2 \
--csv {Your_Path_to_TCGA_csv} \
--h5 {Your_Path_to_h5_file}

For CAMELYON16 testing:

python main.py \
--test {Your_Path_to_Pretrain} \
--num_test 10 \
--type camelyon16 \
--num_subbags 10 \
--mode random \
--num_msg 1 \
--num_layers 2 \
--csv {Your_Path_to_CAMELYON16_csv}\
--h5 {Your_Path_to_h5_file}