This repository contains the pytorch implementation of omni-directional saliency map estimation in IEICE journal paper:
- Takao Yamanaka, Tatsuya Suzuki, Taiki Nobutsune, and Chenjunlin Wu, "Multi-Scale Estimation for Omni-Directional Saliency Maps Using Learnable Equator Bias," IEICE Transactions on Information and Systems, Vol. E106-D, No. 10, 2023. https://arxiv.org/abs/2309.08139
In addition to this repository, download the following zip files, unzip them, and place them under the odisal folders.
- DataSets.zip (5.94GB): odisal/Datasets
- pretrained.zip (928.3MB): odisal/pretrained
- maps.zip (36.2MB): odisal/program/maps
- pytorch_dpn_pretrained.zip (1.1GB): odisal/program/models/pytorch_dpn_pretrained
- deepgaze_pytorch.zip (389.3MB): odisal/program/models/deepgaze_pytorch
Since the following folders include only output files, it does not have to be downloaded.
- logs.zip (2.53GB): odisal/program/logs
- eval.zip (53KB): odisal/program/eval
- outputs.zip (72MB): odisal/program/outputs
Multi-Scale Estimation (Multi-Angles of View; MAV)
> cd program
> python pipeline.py --cfg config/DenseSal_ch512_100_110_120.yaml
Signle-Scale Estimation (Single Angle of View; SAV)
> cd program
> python pipeline.py --cfg config/DenseSal_BA2_with_features_ch512_100.yaml
'pipeline.py' excecutes fine-tuning, estimation, and evaluation for an omni-directional image dataset with the settings in 'program/confing/*.yaml'.
A trained model for MAV with DenseSal is avalabile in
'program/logs/salient360_2018_BA2_with_feature_100_110_120/densesalbi3/ckpt/checkpoint_20230903-195522_model_best.pth.tar'
If you want to estimate saliency maps for omni-directional images (ODI) with the trained model without training,
- Comment out 'Train:' and 'EVALUATE:' parts in 'program/config/DenseSal_ch512_100_110_120.yaml'. Only leave the 'ESTIMATE:' part.
- Set the path to the model file in 'Resume' in the yaml file.
ESTIMATE > SETTING > RESUME: logs/salient360_2018_BA2_with_feature_100_110_120/densesalbi3/ckpt/checkpoint_20230903-195522_model_best.pth.tar
- Run the pipeline.py.
python pipeline.py --cfg config/DenseSal_ch512_100_110_120.yaml
The estimated ODI saliency maps will be obtained in the 'outputs' folder.
Settings for MainNet (densesalbi3 / dpnsal131_dilation_multipath / deepgaze2e)
ARCH: densesalbi3
Settings for Multi-scale estimation
MAV (Multi-Angles of View)
VIEW_ANGLE: [100, 110, 120 ]
USE_MULTISCALE_MODEL: True
DATASET_CFG_PATH: ../DataSets/salient360_2018_BA2_with_feature_100_110_120/salient360_2018_BA2_with_features_E26_1600_800_500_500_100_110_120.cfg
SAV (Single Angle of View)
VIEW_ANGLE: 100
USE_MULTISCALE_MODEL: False
DATASET_CFG_PATH: ../DataSets/salient360_2018_SVA_100/salient360_2018_SVA_E26_1600_800_500_500.cfg
Settings for the integration layer (Table 1)
Arch. 1
USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_V2_LAYER: False
USE_BASIC_ATTENTION_WITH_FEATURE: False
Arch. 2
USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: False
USE_BASIC_ATTENTION_V2_LAYER: True
USE_BASIC_ATTENTION_WITH_FEATURE: False
Arch. 3
USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_V2_LAYER: False
USE_BASIC_ATTENTION_WITH_FEATURE: True
Arch. 4
USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: False
USE_BASIC_ATTENTION_V2_LAYER: True
USE_BASIC_ATTENTION_WITH_FEATURE: True
- Takao Yamanaka, Tatsuya Suzuki, Taiki Nobutsune, and Chenjunlin Wu, "Multi-Scale Estimation for Omni-Directional Saliency Maps Using Learnable Equator Bias," IEICE Transactions on Information and Systems, Vol. E106-D, No. 10, 2023. https://arxiv.org/abs/2309.08139
- T. Suzuki and T. Yamanaka, "Saliency Map Estimation for Omni-Directional Image Considering Prior Distributions," IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, Miyazaki, Japan. http://arxiv.org/abs/1807.06329
- T. Oyama and T. Yamanaka, "Influence of Image Classification Accuracy on Saliency Map Estimation," CAAI Transactions on Intelligence Technology, vol. 3, issue 3, 2018, pp. 140-152. https://digital-library.theiet.org/content/journals/10.1049/trit.2018.1012 https://arxiv.org/abs/1807.10657
- Akis Linardos, Matthias Kümmerer, Ori Press, and Matthias Bethge, "DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling," ICCV 2021. https://arxiv.org/abs/2105.12441 https://github.com/matthias-k/DeepGaze
The codes were confirmed with the following versions.
- Python 3.9.7
- PyTorch 2.0.0+cu117
- NVIDIA Driver: 510.47.03
- CUDA: 11.6