/jhcutils

A bunch of functions that I find myself rewriting in a many scripts.

Primary LanguageRGNU General Public License v3.0GPL-3.0

jhcutils

License: GPL v3 R build status Travis build status AppVeyor build status Coverage status
jhc github jhc twitter jhc website

These are a bunch of functions that I find myself declaring and rewriting in a many scripts and analyses.

Full documentation at the ‘pkgdown site’.

Installation

You can install ‘jhcutils’ with:

devtools::install_github("jhrcook/jhcutils")

library(jhcutils)
library(datasets)
library(tidygraph)
library(dplyr)
set.seed(0)

Additions

If you have any recommended additions, please open an issue.


General Utilities

n_unique - return the number of unique values in a vector.

unique_na - return the unique values in a vector, omitting NA.

a <- c(1, 2, 3, NA, 3)
unique_na(a)
#> [1] 1 2 3
b <- list(c(1, 2, 3, NA), c(1, 2, NA, 5))
unique_na(b)
#> [[1]]
#> [1]  1  2  3 NA
#> 
#> [[2]]
#> [1]  1  2 NA  5
unique_na(b, to_unlist = TRUE)
#> [1] 1 2 3 5

minmax - set limits on a vector of numeric values.

c <- sample(-100:100, 20)
c
#>  [1]  41 -33  66  28  61 -58 -87  86 -50 -16 -80   5  81 -27 -94 -28 -22 -64   4
#> [20]   9
minmax(c, -10, 10)
#>  [1]  10 -10  10  10  10 -10 -10  10 -10 -10 -10   5  10 -10 -10 -10 -10 -10   4
#> [20]   9

u_pull - works just like dplyr::pull() except only returns unique values. There are also options to return the values sorted and without NA using the paramters sorted and na.rm, respectively.

str(mtcars$gear)
#>  num [1:32] 4 4 4 3 3 3 3 4 4 4 ...
mtcars %>% u_pull(gear)
#> [1] 4 3 5

vsample - a safe wrapper for base::sample() that always assumes you are passing a vector.

# samples from 1:10
sample(10)
#>  [1]  5 10  2  8  6  1  4  3  9  7
# just returns 10
vsample(10)
#> [1] 10

# samples from 1:5 with replacement
sample(5, 10, replace = TRUE)
#>  [1] 3 2 2 4 4 4 2 4 1 1
# samples from `c(5)` with replacement 
vsample(5, 10, replace = TRUE)
#>  [1] 5 5 5 5 5 5 5 5 5 5

str_replace_us and str_replace_sp - replace underscores with spaces, or vice vera.

Tidygraph

quick_forestfire and quick_barabasi- wrapper around tidygraph::play_forestfire and tidygraph::play_barabasi_albert except that it will return a tidygraph object with the node attribute "name".

forest_gr <- quick_forestfire(10)
forest_gr
#> # A tbl_graph: 10 nodes and 31 edges
#> #
#> # An undirected simple graph with 1 component
#> #
#> # Node Data: 10 x 1 (active)
#>   name 
#>   <chr>
#> 1 A    
#> 2 B    
#> 3 C    
#> 4 D    
#> 5 E    
#> 6 F    
#> # … with 4 more rows
#> #
#> # Edge Data: 31 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     2     3
#> 3     1     3
#> # … with 28 more rows
my_plot_fxn(forest_gr) +
    labs(title = "Example of a quick Forest Fire graph model")

barabasi_gr <- quick_barabasi(10)
barabasi_gr
#> # A tbl_graph: 10 nodes and 9 edges
#> #
#> # An unrooted tree
#> #
#> # Node Data: 10 x 1 (active)
#>   name 
#>   <chr>
#> 1 A    
#> 2 B    
#> 3 C    
#> 4 D    
#> 5 E    
#> 6 F    
#> # … with 4 more rows
#> #
#> # Edge Data: 9 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     1     3
#> 3     2     4
#> # … with 6 more rows
my_plot_fxn(barabasi_gr) +
    labs(title = "Example of a quick Barabasi-Albert graph")

quick_graph - randomly selects one of the above random graphs.

recursive_graph_join - recursively join a list of tidygraph objects.

gr_list <- purrr::map(c(5, 10, 15), quick_forestfire)
gr <- recursive_graph_join(gr_list)
gr
#> # A tbl_graph: 15 nodes and 93 edges
#> #
#> # A directed acyclic multigraph with 1 component
#> #
#> # Node Data: 15 x 1 (active)
#>   name 
#>   <chr>
#> 1 A    
#> 2 B    
#> 3 C    
#> 4 D    
#> 5 E    
#> 6 F    
#> # … with 9 more rows
#> #
#> # Edge Data: 93 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     1     3
#> 3     2     3
#> # … with 90 more rows
my_plot_fxn(gr) +
    labs(title = "Example of joining 3 forest fire graphs")

filter_component_size - filter the components of a tidygraph object by their individual number of nodes (order).

gr <- tidygraph::bind_graphs(quick_forestfire(4, name = LETTERS),
                             quick_forestfire(6, name = letters))
igraph::count_components(gr)
#> [1] 2
igraph::count_components(filter_component_size(gr, min_size = 5))
#> [1] 1
igraph::count_components(filter_component_size(gr, max_size = 5))
#> [1] 1

get/rm_giant_component - either return only or everything except the giant component of a graph (i.e. the component with the most number of nodes).

gr_large <- quick_forestfire(10, name = LETTERS)
gr_small <- quick_forestfire(5, name = letters)
gr <- tidygraph::bind_graphs(gr_large, gr_small)
gr
#> # A tbl_graph: 15 nodes and 28 edges
#> #
#> # An undirected simple graph with 2 components
#> #
#> # Node Data: 15 x 1 (active)
#>   name 
#>   <chr>
#> 1 A    
#> 2 B    
#> 3 C    
#> 4 D    
#> 5 E    
#> 6 F    
#> # … with 9 more rows
#> #
#> # Edge Data: 28 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     2     3
#> 3     1     3
#> # … with 25 more rows
get_giant_component(gr)
#> # A tbl_graph: 10 nodes and 19 edges
#> #
#> # An undirected simple graph with 1 component
#> #
#> # Node Data: 10 x 1 (active)
#>   name 
#>   <chr>
#> 1 A    
#> 2 B    
#> 3 C    
#> 4 D    
#> 5 E    
#> 6 F    
#> # … with 4 more rows
#> #
#> # Edge Data: 19 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     2     3
#> 3     1     3
#> # … with 16 more rows
rm_giant_component(gr)
#> # A tbl_graph: 5 nodes and 9 edges
#> #
#> # An undirected simple graph with 1 component
#> #
#> # Node Data: 5 x 1 (active)
#>   name 
#>   <chr>
#> 1 a    
#> 2 b    
#> 3 c    
#> 4 d    
#> 5 e    
#> #
#> # Edge Data: 9 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     1     3
#> 3     2     3
#> # … with 6 more rows

num_qual_neighbors - to be used with tidygraph::map_local_int() to count the number of neighbors that satisfy a logical expression that is applied to the node attributes of the neighborhood.

gr <- quick_barabasi(30)
gr
#> # A tbl_graph: 30 nodes and 29 edges
#> #
#> # An unrooted tree
#> #
#> # Node Data: 30 x 1 (active)
#>   name 
#>   <chr>
#> 1 AB   
#> 2 AC   
#> 3 AD   
#> 4 AE   
#> 5 AF   
#> 6 AG   
#> # … with 24 more rows
#> #
#> # Edge Data: 29 x 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     1     3
#> 3     2     4
#> # … with 26 more rows
my_plot_fxn(gr)

# number of neighbors with a "B" in their name
B_gr <- gr %>%
   mutate(name_with_B = map_local_int(
       .f = num_qual_neighbors,
       lgl_filter = rlang::expr(stringr::str_detect(name, "B"))
   ))

B_gr %N>%
   filter(name_with_B > 0) %>%
   my_plot_fxn()

get_node_index - returns the indices of the nodes that pass the expression evaluted in ’dplyr::filter()`.

# simple equalities
get_node_index(quick_barabasi(10), name == "B")
#> [1] 2
get_node_index(quick_barabasi(10), name %in% c("B", "C", "D"))
#> [1] 2 3 4
# can also evaluate functions
get_node_index(quick_barabasi(10), stringr::str_detect(name, "A|B|C"))
#> [1] 1 2 3

Pacakge Utilities

document_df - prints the framework for documenting a data frame object.

dat <- tibble::tibble(x = c(LETTERS[1:5]),
                      y = c(1:5),
                      z = list(rep(list(1:3), 5)))
dat
#> # A tibble: 5 x 3
#>   x         y z         
#>   <chr> <int> <list>    
#> 1 A         1 <list [5]>
#> 2 B         2 <list [5]>
#> 3 C         3 <list [5]>
#> 4 D         4 <list [5]>
#> 5 E         5 <list [5]>
document_df(dat)
#> #' @format a tibble (5 x 3)
#> #' \describe{
#> #'     \item{x}{}
#> #'     \item{y}{}
#> #'     \item{z}{}
#> #' }