This is an implementation of [TPAMI2024] Deep Diversity-Enhanced Feature Representation of Hyperspectral Images. [arXiv]
-
python 3.7, pytorch 1.7.0, and cuda 11.0
-
Matlab
You can refer to the following links to download the dataset, ICVL. Following QRNN3D, we generated the noisy images for training and testing. You can run the matlab programs in the folder 'datasets' to get the pre-processed training and testing data.
Enter the HSID folder and run
bash train_gaussian.sh
Enter the HSID folder and run
bash train_complex.sh
python test.py --cuda --gpu "0" --dataset "ICVL" --noiseType "gaussian" --model_name "res3net" --checkpoint checkpoints/ICVL/res3net_gaussian_epoch_25.pth
python test.py --cuda --gpu "0" --dataset "ICVL" --noiseType "complex" --model_name "res3net" --checkpoint checkpoints/ICVL/res3net_complex_epoch_25.pth
You can refer to the following links to download the dataset, CAVE. And run the matlab programs in the folder 'datasets' to get the pre-processed training and testing data.
Enter the HSISR folder and run
bash train.sh
python test.py --cuda --gpu "0" --dataset "CAVE" --model_name "res3net" --upscale_factor 4 --checkpoint checkpoints/CAVE_x4/res3net_4_epoch_50.pth'
This codebase borrows from Spectralformer and 3D-CNN.
You can refer to the following link to download the datasets, IndianPine and Pavia.
Enter the HSIC folder and run
python main.py --dataset="Indian" --method="res3net" --epoch=1000 --patches=7 --weight_decay=1e-2 --learning_rate=1e-3 --gpu_id=0 --loss_weight=1e-4
python main.py --dataset="Pavia" --method="res3net" --epoch=160 --patches=7 --weight_decay=1e-3 --learning_rate=1e-3 --gpu_id=0 --loss_weight=3e-4
python main.py --flag_test="test" --dataset="Indian" --method="res3net" --model_name="checkpoints/res3net_Indian/res3net_best.pt" --patches=7
python main.py --flag_test="test" --dataset="Pavia" --method="res3net" --model_name="checkpoints/res3net_Pavia/res3net_best.pt" --patches=7
Please kindly cite our work if you find it helpful.
@article{hou23deep,
title={Deep Diversity-Enhanced Feature Representation of Hyperspectral Images},
author={Hou, Jinhui and Zhu, Zhiyu and Hou, Junhui and Liu, Hui and Zeng, Huanqiang and Meng, Deyu},
journal={arXiv preprint arXiv:2301.06132}
year={2023}
}