Deep Patch Visual Odometry
This repository contains the source code for our paper:
Deep Patch Visual Odometry
Zachary Teed, Lahav Lipson, Jia Deng
@article{teed2022deep,
title={Deep Patch Visual Odometry},
author={Teed, Zachary and Lipson, Lahav and Deng, Jia},
journal={arXiv preprint arXiv:2208.04726},
year={2022}
}
Setup and Installation
The code was tested on Ubuntu 20 and Cuda 11.
Update 9/12: We have an official Docker
Clone the repo
git clone https://github.com/princeton-vl/DPVO.git --recursive
cd DPVO
Create and activate the dpvo anaconda environment
conda env create -f environment.yml
conda activate dpvo
Next install the DPVO package
wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.zip
unzip eigen-3.4.0.zip -d thirdparty
# install DPVO
pip install .
# download models and data (~2GB)
./download_models_and_data.sh
Recommended - Install the Pangolin Viewer
Note: You will need to have CUDA 11 and CuDNN installed on your system.
- Step 1: Install Pangolin (need the custom version included with the repo)
./Pangolin/scripts/install_prerequisites.sh recommended
mkdir Pangolin/build && cd Pangolin/build
cmake ..
make -j8
sudo make install
cd ../..
- Step 2: Install the viewer
pip install ./DPViewer
Demos
DPVO can be run on any video or image directory with a single command. Note you will need to have installed DPViewer to visualize the reconstructions. The pretrained models can be downloaded from google drive models.zip if you have not already run the download script.
python demo.py \
--imagedir=<path to image directory or video> \
--calib=<path to calibration file> \
--viz # enable visualization
iPhone
python demo.py --imagedir=movies/IMG_0494.MOV --calib=calib/iphone.txt --stride=5 --viz
TartanAir
Download a sequence from TartanAir (several samples are availabe from download directly from the webpage)
python demo.py --imagedir=<path to image_left> --calib=calib/tartan.txt --stride=1 --viz
EuRoC
Download a sequence from EuRoC (download ASL format)
python demo.py --imagedir=<path to mav0/cam0/data/> --calib=calib/euroc.txt --stride=2 --viz
Evaluation
We provide evaluation scripts for TartanAir and EuRoC. Up to date result logs on these datasets can be found in the logs
directory.
TartanAir:
Results on the validation splits and test sets can be obtained with the command; however, only ground truth for the validation split is public.
python evaluate_tartan.py --trials=5 --split=validation
EuRoC:
python evaluate_euroc.py --trials=5
Training
Make sure you have run ./download_models_and_data.sh
. Your directory structure should look as follows
├── datasets
├── TartanAir.pickle
├── TartanAir
├── abandonedfactory
├── abandonedfactory_night
├── ...
├── westerndesert
...
To train (log files will be written to runs/<your name>
). Model will be run on the validation split every 10k iterations
python train.py --steps=240000 --lr=0.00008 --name=<your name>
Change Log
- Aug 08, 2022: Initial release
- Sep 12, 2022: Add link to docker
Acknowledgements
- Our Viewer is adapted from DSO.