/nnunet_docker

Utilities to run nnUNet more easily using containers

Primary LanguagePythonOtherNOASSERTION

Docker container-ready nnUNet wrapper for SITK-readable and DICOM files

Context

Given that nnUNet is a relatively flexible framework, we have developed a container that allows users to run nnUNet in a container while varying the necessary models. The main features are inferring all necessary parameters from the nnUNet files (spacing, extensions) and working for both DICOM folder and SITK-readable files. If the input is a DICOM, the segmentation is converted into a DICOM-seg file, compatible with PACS systems.

Usage

Standalone script

A considerable objective of this framework was its deployment as a standalone tool (for bash). To use it:

  1. Install the necessary packages using an appropriate Python environment (i.e. pip install -r requirements.txt). We have tested this using Python v3.11
  2. Run python utils/entrypoints.py --help to see the available options
  3. Segment away!
python utils/entrypoint.py --help
usage: Entrypoint for nnUNet prediction. Handles all data format conversions. [-h] --series_paths SERIES_PATHS [SERIES_PATHS ...] --model_path
                                                                              MODEL_PATH [--checkpoint_name CHECKPOINT_NAME] --output_dir
                                                                              OUTPUT_DIR --metadata_path METADATA_PATH [--study_uid STUDY_UID]
                                                                              [--folds FOLDS [FOLDS ...]] [--tta] [--tmp_dir TMP_DIR] [--is_dicom]
                                                                              [--proba_map] [--rt_struct_output] [--save_nifti_inputs]

options:
  -h, --help            show this help message and exit
  --series_paths SERIES_PATHS [SERIES_PATHS ...], -i SERIES_PATHS [SERIES_PATHS ...]
                        Path to input series
  --model_path MODEL_PATH, -m MODEL_PATH
                        Path to nnUNet model folder
  --checkpoint_name CHECKPOINT_NAME, -ckpt CHECKPOINT_NAME
                        Checkpoint name for nnUNet
  --output_dir OUTPUT_DIR, -o OUTPUT_DIR
                        Path to output directory
  --metadata_path METADATA_PATH, -M METADATA_PATH
                        Path to metadata template for DICOM-Seg output
  --study_uid STUDY_UID, -s STUDY_UID
                        Study UID if series are SimpleITK-readable files
  --folds FOLDS [FOLDS ...], -f FOLDS [FOLDS ...]
                        Sets which folds should be used with nnUNet
  --tta, -t             Uses test-time augmentation during prediction
  --tmp_dir TMP_DIR     Temporary directory
  --is_dicom, -D        Assumes input is DICOM (and also converts to DICOM seg; prediction.dcm in output_dir)
  --proba_map, -p       Produces a Nifti format probability map (probabilities.nii.gz in output_dir)
  --rt_struct_output    Produces a DICOM RT Struct file (struct.dcm in output_dir)
  --save_nifti_inputs, -S
                        Moves Nifti inputs to output folder (volume_XXXX.nii.gz in output_dir)

Example:

python utils/entrypoints.py \
    -i study/series_1 study/series_2 study/series_3 \
    -o example_output/ \
    -m models/prostate_model \
    -M metadata_templates/metadata-template.json \
    -D -f 0 1 2 3 4 \
    --proba_map \
    --save_nifti_inputs

Running as a Docker container

Firstly, users must install Docker. Docker requires sudo access so users should be sure to have this. Then:

  1. Build the container (sudo docker build -f Dockerfile . -t nnunet_predict)
  2. Run the container. We have replicated this as an additional script (utils/entrypoint-with-docker.py) with the same arguments as those specified to run as a standalone tool with the addition of a -c flag specifying the name of the Docker image.

With utils/entrypoint-with-docker.py, this:

docker run \
    --gpus all \
    --user "$(id -u):$(id -g)" \
    -v $(dirname $(realpath $INPUT_PATHS)):/data/input \
    -v $(realpath $OUTPUT_FOLDER):/data/output \
    -v $(realpath $MODEL_FOLDER):/model \
    -v $(dirname $(realpath $METADATA_TEMPLATE)):/metadata \
    --rm \
    $DOCKER_IMAGE \
    -i $file_names_in_docker -d -M $metadata_name_in_docker

becomes this (for a DICOM input):

python utils/entrypoint-with-docker.py \
    -i $INPUT_PATHS \
    -o $OUTPUT_FOLDER \
    -m $MODEL_FOLDER \
    -d \
    -M $METADATA_TEMPLATE \
    -c $DOCKER_IMAGE

Notes on using DICOM

It is necessary to generate metadata templates for the conversion between the segmentation prediction volume and DICOM volumes. To generate these, the pydicom_seg developers recommend this web app. It is easy to use and generates reliable metadata templates. Metadata templates should be generated for all segmentation targets to ensure that everything is correctly formatted.