/CanonicalFusion

Official Code for "CanonicalFusion: Generating Drivable 3D Human Avatars from Multiple Images (ECCV 2024)"

Primary LanguagePythonMIT LicenseMIT

[ECCV 2024] CanonicalFusion: Generating Drivable 3D Human Avatars from Multiple Images

CanonicalFusion: Generating Drivable 3D Human Avatars from Multiple Images (ECCV 2024 ACCEPTED !!)

Jisu Shin, Junmyeong Lee, Seongmin Lee, Min-Gyu Park, Ju-Mi Kang, Ju Hong Yoon, and Hae-Gon Jeon

[PAPER]

Not a completed version. Currently on updating..

Introduction

CanonicalFusion. We propose CanonicalFusion, which takes multiple frames and generate drivable 3D avatar by integrating individual reconstruction results into the canonical space.

Getting Started

Prerequisites (Recommended Version)

  • Python 3.9
  • Pytorch 2.0.1
  • Cuda 11.8

Installation

To run the Demo, it is suggested to install the Conda environment as detailed below (check the compatibility with your version, especially for pytorch-lightning and torchmetrics):

conda create -n canonicalfusion python=3.9
conda activate canonicalfusion
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install scikit-image scikit-learn pillow numpy matplotlib trimesh fvcore smplx timm tensorboard pytorch_msssim loguru pyrender open3d pickle5 albumentations people-segmentation pymeshlab rembg meshzoo ninja basicsr pysdf omegaconf torch_scatter
(Optional) apt-get install -y libsm6 libxext6 libxrender-dev libglib2.0-0 libgl1-mesa-glx 
pip install opencv-python
pip install torchmetrics==0.7 pytorch-lightning==2.1
pip install git+https://github.com/tatsy/torchmcubes.git
conda install -c conda-forge pyembree

Install pytorch3d

git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d && pip install -e .

Install pyremesh (refer to Chupa:https://github.com/snuvclab/chupa)

python -m pip install --no-index --find-links ./diff_renderer/src/normal_nds/ext/pyremesh pyremesh

Install Flexicubes setting (Kaolin version check: https://kaolin.readthedocs.io/en/latest/notes/installation.html)

pip install git+https://github.com/NVlabs/nvdiffrast/
pip install kaolin==0.15.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.0.1_cu118.html

Install Pyopengl

git clone https://github.com/mcfletch/pyopengl
cd pyopengl
pip install -e .
cd accelerate
pip install -e .

Dataset

Our model requires fitted SMPL-X for each image as an input. We provide some examples that are compatible to our model. Note that the pelvis of the SMPL-X should be nearly centered to generate the plausible reconstruction results since we train our model on this setting.

Dataset Tree

You need to organize the dataset as following:

YOUR DATASET PATH
├── dataset_name
│   └── IMG/
│       └── frame1/
│           └── 0001.png
│       └── frame2/
│           └── 0002.png
│       └── ...
│   └── DEPTH/
│       └── frame1/
│           └── 0001_front.png
│           └── 0001_back.png
│       └── ...
│   └── SMPL/
│       └── frame1/
│           └── 0001.json
│           └── 0001.obj
├── resource
│   └──smpl_models/
│       └── smplx/
│   └──pretrained_models
│       └── lbs_ckpt/
│       └── main_ckpt/
│           └── COLOR
│           └── DEPTH_LBS

Inference

Stage 1: Initial reconstruction from a single view

cd ./apps
python 01_human_recon_eval.py

Stage 2: Refine canonical model with multiple frames

You need to manually set the frame number that you want to use on refinement. (Will be revised soon)

cd ./apps
python 02_canonical_fusion.py

Citation

Will be updated soon

Contact

If you have any question, please feel free to contact us via jsshin98@gm.gist.ac.kr.

Coming Soon! :)