/emotion

Primary LanguageJupyter Notebook

emotion detection

trained models

model name test accuracy frame time dataset
emotion_mini_XCEPTION_64x64_0.66_7ms.hdf5 0.66 7ms FER
emotion_mini_XCEPTION_48x48_0.63_5ms.hdf5 0.63 5ms FER
  • frame time here is running on Keras on python and a Macbook CPU. Tensorflow + CPU is ~2ms faster.

model conversions

bazel run --config=opt //tensorflow/contrib/lite/toco:toco -- --input_file=<input: frozen graph> --output_file=<output: .tflite model> --inference_type=FLOAT --input_shape=1,64,64,1 --input_array=input_1 --output_array=output_node0
  • from frozen graph to tflite quantized model

TODO

  • train with FER+ data labelled with 10 people, (i.e. each image will have 10 votes)
  • train with SVM on the last stage of network