This repository is an adaptation of the official SAC repository to solve Meta-World tasks. To use this repository, please:
- Follow the installation instructions for this repository from below.
- Install the Meta-World repository using the provided installation instructions (using the "from-source" installation if you want to modify the Meta-World environments).
- Fix bug in Meta-World rendering by changing this line to:
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
- Train policies on the respective Meta-World environments by setting the appropriate
--metaenv_name=<name_of_env>
parameter for the training command below (for a list of environment names see the meta_envs.py file). Example command:
softlearning run_example_local examples.development \
--universe=gym \
--domain=HalfCheetah \
--task=v3 \
--exp-name=metaworld-pick_place \
--checkpoint-frequency=10 \
--metaenv_name=reach_push_pick_place \
--server-port=4327
Note: The --server-port
argument is important if you want to run multiple runs at the same time, just make sure to use different server ports for each of them.
5. You can visualize rollouts from the resulting policy by using the visualization command from below, again adding the appropriate --metaenv_name
parameter (set --deterministic=False
to get stochastic rollouts). Example command:
python -m examples.development.simulate_policy \
<path_to_experiment/checkpoint_{}> \
--max-path-length=150 \
--num-rollouts=3 \
--video-save-path=<path_to_save_folder> \
--metaenv_name=reach_push_pick_place \
--deterministic=False
- You can generate a dataset of policy rollouts in HDF5 format by using the generate_rollout_dataset.py script. Example command (here
--deterministic=False
by default):
python -m examples.development.generate_rollout_dataset \
<path_to_experiment/checkpoint_{}> \
--max-path-length=150 \
--num-rollouts=3 \
--data-save-path=<path_to_save_folder> \
--metaenv_name=reach_push_pick_place
At this point we assume that the policy takes observations of dimension 6 but the environment works with an observation space of 12. To resolve this inconsistency, the following files have been edited to set dimensionalities right. If you need to remove these changes, please remove these edits (these edits have a comment with HACK
in it).
softlearning/policies/utils.py
softlearning/samplers/simple_sampler.py
Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is fairly thin and primarily optimized for our own development purposes. It utilizes the tf.keras modules for most of the model classes (e.g. policies and value functions). We use Ray for the experiment orchestration. Ray Tune and Autoscaler implement several neat features that enable us to seamlessly run the same experiment scripts that we use for local prototyping to launch large-scale experiments on any chosen cloud service (e.g. GCP or AWS), and intelligently parallelize and distribute training for effective resource allocation.
This implementation uses Tensorflow. For a PyTorch implementation of soft actor-critic, take a look at rlkit.
The environment can be run either locally using conda or inside a docker container. For conda installation, you need to have Conda installed. For docker installation you will need to have Docker and Docker Compose installed. Also, most of our environments currently require a MuJoCo license.
-
Download and install MuJoCo 1.50 and 2.00 from the MuJoCo website. We assume that the MuJoCo files are extracted to the default location (
~/.mujoco/mjpro150
and~/.mujoco/mujoco200_{platform}
). Unfortunately,gym
anddm_control
expect different paths for MuJoCo 2.00 installation, which is why you will need to have it installed both in~/.mujoco/mujoco200_{platform}
and~/.mujoco/mujoco200
. The easiest way is to create a symlink from~/.mujoco/mujoco200_{plaftorm}
->~/.mujoco/mujoco200
with:ln -s ~/.mujoco/mujoco200_{platform} ~/.mujoco/mujoco200
. -
Copy your MuJoCo license key (mjkey.txt) to ~/.mujoco/mjkey.txt:
-
Clone
softlearning
git clone https://github.com/rail-berkeley/softlearning.git ${SOFTLEARNING_PATH}
- Create and activate conda environment, install softlearning to enable command line interface.
cd ${SOFTLEARNING_PATH}
conda env create -f environment.yml
conda activate softlearning
pip install -e ${SOFTLEARNING_PATH}
The environment should be ready to run. See examples section for examples of how to train and simulate the agents.
Finally, to deactivate and remove the conda environment:
conda deactivate
conda remove --name softlearning --all
To build the image and run the container:
export MJKEY="$(cat ~/.mujoco/mjkey.txt)" \
&& docker-compose \
-f ./docker/docker-compose.dev.cpu.yml \
up \
-d \
--force-recreate
You can access the container with the typical Docker exec-command, i.e.
docker exec -it softlearning bash
See examples section for examples of how to train and simulate the agents.
Finally, to clean up the docker setup:
docker-compose \
-f ./docker/docker-compose.dev.cpu.yml \
down \
--rmi all \
--volumes
- To train the agent
softlearning run_example_local examples.development \
--universe=gym \
--domain=HalfCheetah \
--task=v3 \
--exp-name=my-sac-experiment-1 \
--checkpoint-frequency=1000 # Save the checkpoint to resume training later
- To simulate the resulting policy:
First, find the path that the checkpoint is saved to. By default (i.e. without specifying the
log-dir
argument to the previous script), the data is saved under~/ray_results/<universe>/<domain>/<task>/<datatimestamp>-<exp-name>/<trial-id>/<checkpoint-id>
. For example:~/ray_results/gym/HalfCheetah/v3/2018-12-12T16-48-37-my-sac-experiment-1-0/mujoco-runner_0_seed=7585_2018-12-12_16-48-37xuadh9vd/checkpoint_1000/
. The next command assumes that this path is found from${SAC_CHECKPOINT_DIR}
environment variable.
python -m examples.development.simulate_policy \
${SAC_CHECKPOINT_DIR} \
--max-path-length=1000 \
--num-rollouts=1 \
--render-mode=human
examples.development.main
contains several different environments and there are more example scripts available in the /examples
folder. For more information about the agents and configurations, run the scripts with --help
flag: python ./examples/development/main.py --help
optional arguments:
-h, --help show this help message and exit
--universe {gym}
--domain {...}
--task {...}
--num-samples NUM_SAMPLES
--resources RESOURCES
Resources to allocate to ray process. Passed to
`ray.init`.
--cpus CPUS Cpus to allocate to ray process. Passed to `ray.init`.
--gpus GPUS Gpus to allocate to ray process. Passed to `ray.init`.
--trial-resources TRIAL_RESOURCES
Resources to allocate for each trial. Passed to
`tune.run`.
--trial-cpus TRIAL_CPUS
Resources to allocate for each trial. Passed to
`tune.run`.
--trial-gpus TRIAL_GPUS
Resources to allocate for each trial. Passed to
`tune.run`.
--trial-extra-cpus TRIAL_EXTRA_CPUS
Extra CPUs to reserve in case the trials need to
launch additional Ray actors that use CPUs.
--trial-extra-gpus TRIAL_EXTRA_GPUS
Extra GPUs to reserve in case the trials need to
launch additional Ray actors that use GPUs.
--checkpoint-frequency CHECKPOINT_FREQUENCY
Save the training checkpoint every this many epochs.
If set, takes precedence over
variant['run_params']['checkpoint_frequency'].
--checkpoint-at-end CHECKPOINT_AT_END
Whether a checkpoint should be saved at the end of
training. If set, takes precedence over
variant['run_params']['checkpoint_at_end'].
--restore RESTORE Path to checkpoint. Only makes sense to set if running
1 trial. Defaults to None.
--policy {gaussian}
--env ENV
--exp-name EXP_NAME
--log-dir LOG_DIR
--upload-dir UPLOAD_DIR
Optional URI to sync training results to (e.g.
s3://<bucket> or gs://<bucket>).
--confirm-remote [CONFIRM_REMOTE]
Whether or not to query yes/no on remote run.
In order to resume training from previous checkpoint, run the original example main-script, with an additional --restore
flag. For example, the previous example can be resumed as follows:
softlearning run_example_local examples.development \
--universe=gym \
--domain=HalfCheetah \
--task=v3 \
--exp-name=my-sac-experiment-1 \
--checkpoint-frequency=1000 \
--restore=${SAC_CHECKPOINT_PATH}
The algorithms are based on the following papers:
Soft Actor-Critic Algorithms and Applications.
Tuomas Haarnoja*, Aurick Zhou*, Kristian Hartikainen*, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine.
arXiv preprint, 2018.
paper | videos
Latent Space Policies for Hierarchical Reinforcement Learning.
Tuomas Haarnoja*, Kristian Hartikainen*, Pieter Abbeel, and Sergey Levine.
International Conference on Machine Learning (ICML), 2018.
paper | videos
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
International Conference on Machine Learning (ICML), 2018.
paper | videos
Composable Deep Reinforcement Learning for Robotic Manipulation.
Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, Sergey Levine.
International Conference on Robotics and Automation (ICRA), 2018.
paper | videos
Reinforcement Learning with Deep Energy-Based Policies.
Tuomas Haarnoja*, Haoran Tang*, Pieter Abbeel, Sergey Levine.
International Conference on Machine Learning (ICML), 2017.
paper | videos
If Softlearning helps you in your academic research, you are encouraged to cite our paper. Here is an example bibtex:
@techreport{haarnoja2018sacapps,
title={Soft Actor-Critic Algorithms and Applications},
author={Tuomas Haarnoja and Aurick Zhou and Kristian Hartikainen and George Tucker and Sehoon Ha and Jie Tan and Vikash Kumar and Henry Zhu and Abhishek Gupta and Pieter Abbeel and Sergey Levine},
journal={arXiv preprint arXiv:1812.05905},
year={2018}
}