This tutorial includes a C++ inference of YOLOX/YOLOV5/YOLOV8 for OpenVINO.
Please visit Openvino Homepage for more details.
OpenVINO_2022.3.0
OpenCV-4.6.0
-
Export ONNX model
-
Convert ONNX to OpenVINO
Install requirements for convert tool
pip install openvino-dev
Convert ONNX into the OpenVINO IR
FP32
mo -m <onnx_model_path> --output_dir <MODEL_DIR>
FP16
mo -m <onnx_model_path> --output_dir <MODEL_DIR> --compress_to_fp16
INT8 Quantization with POT
pot -q default -m <ir_model_xml> -w <ir_model_bin> --engine simplified --data-source <data_dir> --output-dir <output_dir_name> --direct-dump --name <int8_model_name>
visit Openvino POT for more details.
mkdir build
cd build
cmake ..
make
./detect <...><...>