Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring (ECCV2020 Spotlight)
Journal version (under review; new BSD dataset)
Conference version (old BSD dataset)
by Zhihang Zhong, Ye Gao, Yinqiang Zheng, Bo Zheng
This work presents an efficient RNN-based model and the first real-world dataset for video deblurring :)
- Python 3.6
- PyTorch 1.6 with GPU
- opencv-python
- scikit-image
- lmdb
- thop
- tqdm
- tensorboard
We have collected a new real-world video deblurring dataset (BSD) with more scenes and better setups (center-aligned), using the proposed beam-splitter acquisition system:
The configurations of the new BSD dataset are as below:
Results on different setups of BSD:
Pretrained models for different setups:
Please download checkpoints and unzip it under the main directory.
Example command to run a pre-trained model:
python main.py --test_only --test_checkpoint ./checkpoints/ESTRNN_C80B15_BSD_3ms24ms.tar --ds_config 3ms24ms --video
Please download and unzip the dataset file for each benchmark.
Then, specify the <path> (e.g. "./dataset/ ") where you put the dataset file and the corresponding dataset configurations in the command, or change the default values in "./para/paramter.py".
Training command is as below:
python main.py --data_root <path> --dataset BSD --ds_config 2ms16ms --data_format RGB
You can also tune the hyper parameters such as batch size, learning rate, epoch number, etc. (P.S.: the actual batch size for ddp mode is num_gpus*batch_size)
python main.py --lr 1e-4 --batch_size 4 --num_gpus 2 --trainer_mode ddp
If you want to train on your own dataset, please refer to "/data/how_to_make_dataset_file.ipynb".
If you use any part of our code, or ESTRNN and BSD are useful for your research, please consider citing:
@inproceedings{zhong2020efficient,
title={Efficient spatio-temporal recurrent neural network for video deblurring},
author={Zhong, Zhihang and Gao, Ye and Zheng, Yinqiang and Zheng, Bo},
booktitle={European Conference on Computer Vision},
pages={191--207},
year={2020},
organization={Springer}
}
@misc{zhong2021efficient,
title={Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring},
author={Zhihang Zhong and Ye Gao and Yinqiang Zheng and Bo Zheng and Imari Sato},
year={2021},
eprint={2106.16028},
archivePrefix={arXiv},
primaryClass={cs.CV}
}