This is the official Python and C++ implementation repository for a paper entitled "Visual Multi-Object Tracking with Re-Identification and Occlusion Handling using Labeled Random Finite Sets", Pattern Recognition (arXiv 2405.18606), (MOTChallenge).
- Exploiting object feature improves tracking performance of labeled random finite set filters (GLMB and LMB filters) by improving data association.
- Using object deep feature is effective for re-ID tasks.
- Fuzzy occlusion handling model improves tracking performance.
- Our implementation for 3D multi-camera multi-object tracking with re-identification is released at 3D-Visual-MOT
- Our GLMB/LMB Python package implementations adapted from Matlab, are released at labeledRFS
Docker image to run VisualRFS codes can be found in VisualRFS Docker Hub.
-
Set Up Python Environment
- Create a
conda
Python environment and activate it:conda create --name virtualenv python==3.7.16 conda activate virtualenv
- Clone this repository recursively to have fuzzylite, and pybind11
git clone --recursive https://github.com/linh-gist/visualrfs.git
- Create a
-
Install Packages
- C++ Packages (Make sure
Eigen 3.4.0
is installed): Navigate to thesrc/cpputils
folder and runpython setup.py build develop
- Python Packages:
pip install -r requirements.txt
- C++ Packages (Make sure
-
Configure Experiment Options
Change the following options when initializingGLMB
orLMB
tracker- C++
GLMB(int width, int height, bool useFeat = true, bool useFuzzyPD = false)
- C++
LMB(int width, int height, bool useFeat = true, bool useFuzzyPD = false)
- Python
LMB: def __init__(self, use_feat=True)
- Python
GLMB: def __init__(self, width, height, use_feat=True)
- C++
-
Prepare Data
- Datasets:
- Folder structure:
|-- detection | |-- detector_fairmot256 | | |-- MOT16-01.npz | | |-- MOT16-02.npz | | | ... | | |-- MOT16-14.npz | |-- detector_fairmot256 | | |-- MOT20-01.npz | | |-- ... | | |-- MOT20-08.npz |-- src | |-- cpputils | |-- joint_glmb | |-- joint_lmb | |-- tracking_utils |-- requirements.txt |-- README.md
- OSPA2 is re-implemented in Python and following this paper, an example code is given in
ospa2.py
.@article{rezatofighi2020trustworthy, title={How trustworthy are the existing performance evaluations for basic vision tasks?}, author={Tran Thien Dat Nguyen and Hamid Rezatofighi and Ba-Ngu Vo and Ba-Tuong Vo and Silvio Savarese and Ian Reid}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022} }
-
Run the Tracking Demo
- Navigate to the
joint_glmb
orjoint_lmb
and runpython run_joint_glmb.py
ORpython run_joint_lmb.py
.
- Navigate to the
Linh Ma (linh.mavan@gm.gist.ac.kr), Machine Learning & Vision Laboratory, GIST, South Korea
If you find this project useful in your research, please consider citing by:
@article{van2024visual,
title={Visual Multi-Object Tracking with Re-Identification and Occlusion Handling using Labeled Random Finite Sets},
author={Linh~Van~Ma and Tran~Thien~Dat~Nguyen and Changbeom~Shim and Du~Yong~Kim and Namkoo~Ha and Moongu~Jeon},
journal={Pattern Recognition},
volume = {156},
year={2024},
publisher={Elsevier}
}