🔥🔥 This is a collection of awesome articles about diffusion models in medical imaging🔥🔥
- Our survey paper on MedIA: Diffusion Models in Medical Imaging: A Comprehensive Survey ❤️
- Our survey paper on arXiv: Diffusion Models for Medical Image Analysis: A Comprehensive Survey ❤️
@article{kazerouni2023diffusion,
title={Diffusion models in medical imaging: A comprehensive survey},
author={Kazerouni, Amirhossein and Aghdam, Ehsan Khodapanah and Heidari, Moein and Azad, Reza and Fayyaz, Mohsen and Hacihaliloglu, Ilker and Merhof, Dorit},
journal={Medical Image Analysis},
pages={102846},
year={2023},
publisher={Elsevier}
}
- Check out our new paper accepted in MICCAI 2023 PRIME Workshop: DermoSegDiff: A Boundary-aware Segmentation Diffusion Model for Skin Lesion Delineation 🥳
- Third release: June 3, 2023
- 😎 April 8, 2023: Our paper is accepted for publication in the Medical Image Analysis Journal (IF: 13.83) 😎
- Second release: March 29, 2023
- First release: November 14, 2022
Generative AI for Medical Imaging: extending the MONAI Framework 🔥
Walter H. L. Pinaya, Mark S. Graham, Eric Kerfoot, Petru-Daniel Tudosiu, Jessica Dafflon, Virginia Fernandez, Pedro Sanchez, Julia Wolleb, Pedro F. da Costa, Ashay Patel, Hyungjin Chung, Can Zhao, Wei Peng, Zelong Liu, Xueyan Mei, Oeslle Lucena, Jong Chul Ye, Sotirios A. Tsaftaris, Prerna Dogra, Andrew Feng, Marc Modat, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
[27th Jul., 2023] [arXiv, 2023]
[Paper] [Github]
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Su Ruan
[24th Jul., 2023] [Journal of Imaging, 2023]
[Paper]
A Comprehensive Survey on Generative Diffusion Models for Structured Data
Heejoon Koo, To Eun Kim
[7th Jun., 2023] [arXiv, 2023]
[Paper]
Diffusion Models for Time Series Applications: A Survey
Lequan Lin, Zhengkun Li, Ruikun Li, Xuliang Li, Junbin Gao
[1st May, 2023] [arXiv, 2023]
[Paper]
A Comprehensive Survey on Knowledge Distillation of Diffusion Models
Weijian Luo
[9th Apr., 2023] [arXiv, 2023]
[Paper]
A Survey on Graph Diffusion Models: Generative AI in Science for Molecule, Protein and Material
Mengchun Zhang, Maryam Qamar, Taegoo Kang, Yuna Jung, Chenshuang Zhang, Sung-Ho Bae, Chaoning Zhang
[4th Apr., 2023] [arXiv, 2023]
[Paper]
Audio Diffusion Model for Speech Synthesis: A Survey on Text To Speech and Speech Enhancement in Generative AI
Chenshuang Zhang, Chaoning Zhang, Sheng Zheng, Mengchun Zhang, Maryam Qamar, Sung-Ho Bae, In So Kweon
[23th Mar., 2023] [arXiv, 2023]
[Paper]
Diffusion Models in NLP: A Survey
Yuansong Zhu, Yu Zhao
[14th Mar., 2023] [arXiv, 2023]
[Paper]
Text-to-image Diffusion Model in Generative AI: A Survey
Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, In So Kweon
[14th Mar., 2023] [arXiv, 2023]
[Paper]
Diffusion Models for Non-autoregressive Text Generation: A Survey
Yifan Li, Kun Zhou, Wayne Xin Zhao, Ji-Rong Wen
[12th Mar., 2023] [arXiv, 2023]
[Paper]
Diffusion Models in Bioinformatics: A New Wave of Deep Learning Revolution in Action
Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, Jianlin Cheng
[13th Feb., 2023] [arXiv, 2023]
[Paper] \
Generative Diffusion Models on Graphs: Methods and Applications
Wenqi Fan, Chengyi Liu, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, Qing Li
[6th Feb., 2023] [arXiv, 2023]
[Paper]
Diffusion Models in Medical Imaging: A Comprehensive Survey 🔥
Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad, Mohsen Fayyaz, Ilker Hacihaliloglu, Dorit Merhof
[14th Nov., 2022] [MedIA Journal, 2023]
[Paper]
Efficient Diffusion Models for Vision: A Survey
Anwaar Ulhaq, Naveed Akhtar, Ganna Pogrebna
[7th Oct., 2022] [arXiv, 2022]
[Paper]
Diffusion Models in Vision: A Survey
Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, Mubarak Shah
[10th Sep., 2022] [arXiv, 2022]
[Paper] [Github]
A Survey on Generative Diffusion Model
Hanqun Cao, Cheng Tan, Zhangyang Gao, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li
[6th Sep., 2022] [arXiv, 2022]
[Paper] [Github]
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang
[2nd Sep., 2022] [arXiv, 2022]
[Paper] [Github]
Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images
Alessandro Fontanella, Grant Mair, Joanna Wardlaw, Emanuele Trucco, Amos Storkey
[3rd Aug, 2023] [arXiv, 2023]
[Paper] [Github]
SANO: Score-Based Diffusion Model for Anomaly Localization in Dermatology
Alvaro Gonzalez-Jimenez, Simone Lionetti, Marc Pouly, Alexander A. Navarini
[18th Jun., 2023] [CVPR Workshop, 2023]
paper]
Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models
Cosmin I. Bercea, Michael Neumayr, Daniel Rueckert, Julia A. Schnabel
[31st May, 2023] [arXiv, 2023]
[Paper]
Unsupervised Anomaly Detection in Medical Images Using Masked Diffusion Model
Hasan Iqbal, Umar Khalid, Jing Hua, Chen Chen
[31st May, 2023] [arXiv, 2023]
[Paper] [Github]
Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection
Cosmin I Bercea, Benedikt Wiestler, Daniel Rueckert, Julia A Schnabel
[15th Mar., 2023] [arXiv, 2023]
[Paper]
Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI
Finn Behrendt, Debayan Bhattacharya, Julia Krüger, Roland Opfer, Alexander Schlaefer
[7th Mar., 2023] [MIDL, 2023]
[Paper] [Github]
Dissolving Is Amplifying: Towards Fine-Grained Anomaly Detection
Jian Shi, Pengyi Zhang, Ni Zhang, Hakim Ghazzai, Yehia Massoud
[28th Feb., 2023] [arXiv, 2023]
[Paper]
The role of noise in denoising models for anomaly detection in medical images
Antanas Kascenas, Pedro Sanchez, Patrick Schrempf, Chaoyang Wang, William Clackett, Shadia S. Mikhael, Jeremy P. Voisey, Keith Goatman, Alexander Weir, Nicolas Pugeault, Sotirios A. Tsaftaris, Alison Q. O'Neil
[19th Jan., 2023] [arXiv, 2023]
[Paper] [Github]
What is Healthy? Generative Counterfactual Diffusion for Lesion Localization
Pedro Sanchez, Antanas Kascenas, Xiao Liu, Alison Q. O'Neil, Sotirios A. Tsaftaris
[25th Jul., 2022] [MICCAI Workshop, 2022]
[Paper] [Github]
AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise
Julian Wyatt, Adam Leach, Sebastian M. Schmon, Chris G. Willcocks
[1st Jun., 2022] [CVPR Workshop, 2022]
[Paper] [Github]
The Swiss Army Knife for Image-to-Image Translation: Multi-Task Diffusion Models
Julia Wolleb, Robin Sandkühler, Florentin Bieder, Philippe C. Cattin
[6th Apr., 2022] [arXiv, 2022]
[Paper]
Diffusion Models for Medical Anomaly Detection
Julia Wolleb, Florentin Bieder, Robin Sandkühler, Philippe C. Cattin
[8th Mar., 2022] [MICCAI, 2022]
[Paper] [Github]
Deep Ultrasound Denoising Using Diffusion Probabilistic Models
Hojat Asgariandehkordi, Sobhan Goudarzi, Adrian Basarab, Hassan Rivaz
[12th June, 2023] [arXiv, 2023]
[Paper]
A Diffusion Probabilistic Prior for Low-Dose CT Image Denoising
Xuan Liu, Yaoqin Xie, Songhui Diao, Shan Tan, Xiaokun Liang
[25th May, 2023] [arXiv, 2023]
[Paper]
CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for Low-Dose CT Denoising and Generalization
Qi Gao, Zilong Li, Junping Zhang, Yi Zhang, Hongming Shan
[4th Apr., 2023] [arXiv, 2023]
[Paper]
DDM2: Self-Supervised Diffusion MRI Denoising with Generative Diffusion Models
Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop, Akshay Chaudhari
[6th Feb., 2023] [ICLR, 2023]
[Paper] [Github]
Low-Dose CT Using Denoising Diffusion Probabilistic Model for 20× Speedup
Wenjun Xia, Qing Lyu, Ge Wang
[29th Sep., 2022] [arXiv, 2022]
[Paper]
PET image denoising based on denoising diffusion probabilistic models
Kuang Gong, Keith A. Johnson, Georges El Fakhri, Quanzheng Li, Tinsu Pan
[13th Sep., 2022] [arXiv, 2022]
[Paper]
Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model
Dewei Hu, Yuankai K. Tao, Ipek Oguz
[27th Jan., 2022] [Medical Imaging 2022: Image Processing]
[Paper] [Github]
Masked Diffusion as Self-supervised Representation Learner
Zixuan Pan, Jianxu Chen, Yiyu Shi
[10th Aug., 2023] [arXiv, 2023]
[Paper]
DermoSegDiff: A Boundary-aware Segmentation Diffusion Model for Skin Lesion Delineation
Afshin Bozorgpour, Yousef Sadegheih, Amirhossein Kazerouni, Reza Azad, Dorit Merhof
[5th Aug., 2023] [MICCAI Workshop, 2023]
[Paper] [Github]
C-DARL: Contrastive diffusion adversarial representation learning for label-free blood vessel segmentation
Boah Kim, Yujin Oh, Bradford J. Wood, Ronald M. Summers, Jong Chul Ye
[31st Jul., 2023] [arXiv, 2023]
[Paper]
Pre-Training with Diffusion models for Dental Radiography Segmentation
Jérémy Rousseau, Christian Alaka, Emma Covili, Hippolyte Mayard, Laura Misrachi, Willy Au
[26th Jul., 2023] [arXiv, 2023]
[Paper]
FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation and Malignancy Classification
Héctor Carrión, Narges Norouzi
[21st Jul., 2023] [arXiv, 2023]
[Paper] [Github]
Annotator Consensus Prediction for Medical Image Segmentation with Diffusion Models
Tomer Amit, Shmuel Shichrur, Tal Shaharbany, and Lior Wolf
[15th Jun., 2023] [arXiv, 2023]
[Paper] [Github]
Conditional Diffusion Models for Weakly Supervised Medical Image Segmentation
Xinrong Hu, Yu-Jen Chen, Tsung-Yi Ho, Yiyu Shi
[6th Jun., 2023] [arXiv, 2023]
[Paper] [Github]
Brain tumor segmentation using synthetic MR images -- A comparison of GANs and diffusion models
Muhammad Usman Akbar, Måns Larsson, and Anders Eklund
[5th Jun., 2023] [arXiv, 2023]
[Paper]
Semi-supervised Brain Tumor Segmentation Using Diffusion Models
Ahmed Alshenoudy, Bertram Sabrowsky-Hirsch, Stefan Thumfart, Michael Giretzlehner, Erich Kobler
[1st Jun., 2023] [AIAI, 2023]
[Paper] [Github]
Multi-Level Global Context Cross Consistency Model for Semi-Supervised Ultrasound Image Segmentation with Diffusion Model
Fenghe Tang, Jianrui Ding, Lingtao Wang, Min Xian, Chunping Ning
[16th May, 2023] [arXiv, 2023]
[Paper] [Github]
Unsupervised Discovery of 3D Hierarchical Structure with Generative Diffusion Features
Nurislam Tursynbek, Marc Niethammer
[28th Apr., 2023] [arXiv, 2023]
[Paper]
DiffuseExpand: Expanding dataset for 2D medical image segmentation using diffusion models
Shitong Shao, Xiaohan Yuan, Zhen Huang, Ziming Qiu, Shuai Wang, Kevin Zhou
[26th Apr., 2023] [arXiv, 2023]
[Paper] [Github]
Ambiguous Medical Image Segmentation using Diffusion Models
Aimon Rahman, Jeya Maria Jose Valanarasu, Ilker Hacihaliloglu, Vishal M Patel
[10th Apr., 2023] [CVPR, 2023]
[Paper] [Github]
BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation
Tao Chen, Chenhui Wang, Hongming Shan
[10th Apr., 2023] [arXiv, 2023]
[Paper]
Diffusion Models for Memory-efficient Processing of 3D Medical Images
Florentin Bieder, Julia Wolleb, Alicia Durrer, Robin Sandkühler, Philippe C. Cattin
[27th Mar., 2023] [MIDL, 2023]
[Paper]
Distribution Aligned Diffusion and Prototype-guided network for Unsupervised Domain Adaptive Segmentation
Haipeng Zhou, Lei Zhu, Yuyin Zhou
[22nd Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation
Zhaohu Xing, Liang Wan, Huazhu Fu, Guang Yang, Lei Zhu
[18th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Stochastic Segmentation with Conditional Categorical Diffusion Models
Lukas Zbinden, Lars Doorenbos, Theodoros Pissas, Raphael Sznitman, Pablo Márquez-Neila
[15th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Importance of Aligning Training Strategy with Evaluation for Diffusion Models in 3D Multiclass Segmentation
Yunguan Fu, Yiwen Li, Shaheer U. Saeed, Matthew J. Clarkson, Yipeng Hu
[10th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Score-Based Generative Models for Medical Image Segmentation using Signed Distance Functions
Lea Bogensperger, Dominik Narnhofer, Filip Ilic, Thomas Pock
[10th Mar., 2023] [arXiv, 2023]
[Paper]
MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer
Junde Wu, Rao Fu, Huihui Fang, Yu Zhang, Yanwu Xu
[19th Jan., 2023] [arXiv, 2023]
[Paper] [Github]
Improved HER2 Tumor Segmentation with Subtype Balancing using Deep Generative Networks
Mathias Öttl, Jana Mönius, Matthias Rübner, Carol I. Geppert, Jingna Qiu, Frauke Wilm, Arndt Hartmann, Matthias W. Beckmann, Peter A. Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
[11th Nov., 2022] [arXiv, 2022]
[Paper]
MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
Junde Wu, Huihui Fang, Yu Zhang, Yehui Yang, Yanwu Xu
[1st Nov., 2022] [arXiv, 2022]
[Paper] [Github]
Accelerating Diffusion Models via Pre-segmentation Diffusion Sampling for Medical Image Segmentation
Xutao Guo, Yanwu Yang, Chenfei Ye, Shang Lu, Yang Xiang, Ting Ma
[27th Oct., 2022] [arXiv, 2022]
[Paper]
Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation
Boah Kim, Yujin Oh, Jong Chul Ye
[19th Sep., 2022] [ICLR, 2023]
[Paper]
Can segmentation models be trained with fully synthetically generated data?
Virginia Fernandez, Walter Hugo Lopez Pinaya, Pedro Borges, Petru-Daniel Tudosiu, Mark S Graham, Tom Vercauteren, M Jorge Cardoso
[17th Sep., 2022] [MICCAI Workshop , 2022]
[Paper]
Diffusion Models for Implicit Image Segmentation Ensembles
Julia Wolleb, Robin Sandkühler, Florentin Bieder, Philippe Valmaggia, Philippe C. Cattin
[6th Dec., 2021] [MIDL, 2022]
[Paper] [Github]
Cycle-guided Denoising Diffusion Probability Model for 3D Cross-modality MRI Synthesis
Shaoyan Pan, Chih-Wei Chang, Junbo Peng, Jiahan Zhang, Richard L.J. Qiu, Tonghe Wang, Justin Roper, Tian Liu, Hui Mao, Xiaofeng Yang
[28th Apr., 2023] [arXiv, 2023]
[Paper]
Zero-shot Medical Image Translation via Frequency-Guided Diffusion Models
Yunxiang Li, Hua-Chieh Shao, Xiao Liang, Liyuan Chen, Ruiqi Li, Steve Jiang, Jing Wang, You Zhang
[5th Apr., 2023] [arXiv, 2023]
[Paper] [Github]
Class-Guided Image-to-Image Diffusion: Cell Painting from Brightfield Images with Class Labels
Jan Oscar Cross-Zamirski, Praveen Anand, Guy Williams, Elizabeth Mouchet, Yinhai Wang, Carola-Bibiane Schönlieb
[15th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Diffusion Models for Contrast Harmonization of Magnetic Resonance Images
Alicia Durrer, Julia Wolleb, Florentin Bieder, Tim Sinnecker, Matthias Weigel, Robin Sandkühler, Cristina Granziera, Özgür Yaldizli, Philippe C. Cattin
[14th Mar., 2023] [arXiv, 2023]
[Paper]
Zero-shot-Learning Cross-Modality Data Translation Through Mutual Information Guided Stochastic Diffusion
Zihao Wang, Yingyu Yang, Maxime Sermesant, Hervé Delingette, Ona Wu
[31st Jan., 2023] [arXiv, 2023]
[Paper]
Brain PET Synthesis from MRI Using Joint Probability Distribution of Diffusion Model at Ultrahigh Fields
Xie Taofeng, Cao Chentao, Cui Zhuoxu, Li Fanshi, Wei Zidong, Zhu Yanjie, Li Ye, Liang Dong, Jin Qiyu, Chen Guoqing, Wang Haifeng
[16th Nov., 2022] [arXiv, 2022]
[Paper]
Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models
Qing Lyu, Ge Wang
[24th Sep., 2022] [arXiv, 2022]
[Paper]
Unsupervised Medical Image Translation with Adversarial Diffusion Models
Muzaffer Özbey, Salman UH Dar, Hasan A Bedel, Onat Dalmaz, Şaban Özturk, Alper Güngör, Tolga Çukur
[17th Jul., 2022] [arXiv, 2022]
[Paper]
A Novel Unified Conditional Score-based Generative Framework for Multi-modal Medical Image Completion
Xiangxi Meng, Yuning Gu, Yongsheng Pan, Nizhuan Wang, Peng Xue, Mengkang Lu, Xuming He, Yiqiang Zhan, Dinggang Shen
[7th Jul., 2022] [arXiv, 2022]
[Paper]
Learning Fourier-Constrained Diffusion Bridges for MRI Reconstruction
Muhammad U. Mirza, Onat Dalmaz, Hasan A. Bedel, Gokberk Elmas, Yilmaz Korkmaz, Alper Gungor, Salman UH Dar, Tolga Çukur
[4th Aug., 2023] [arXiv, 2023]
[Paper] [Github]
Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, Liyue Shen
[16th Jul., 2023] [arXiv, 2023]
[Paper]
DiffuseIR: Diffusion Models For Isotropic Reconstruction of 3D Microscopic Images
Mingjie Pan, Yulu Gan, Fangxu Zhou, Jiaming Liu, Aimin Wang, Shanghang Zhang, Dawei Li
[21st Jun., 2023] [arXiv, 2023]
[Paper]
Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion Generative Models
Sriram Ravula, Brett Levac, Ajil Jalal, Jonathan I. Tamir, Alexandros G. Dimakis
[5th Jun., 2023] [arXiv, 2023]
[Paper] [Github]
Solving Inverse Problems with Score-Based Generative Priors learned from Noisy Data
Asad Aali, Marius Arvinte, Sidharth Kumar, Jonathan I. Tamir
[2nd May., 2023] [arXiv, 2023]
[Paper]
SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI
Zhuo-Xu Cui, Chentao Cao, Jing Cheng, Sen Jia, Hairong Zheng, Dong Liang, Yanjie Zhu
[11th Apr., 2023] [arXiv, 2023]
[Paper]
Sub-volume-based Denoising Diffusion Probabilistic Model for Cone-beam CT Reconstruction from Incomplete Data
Wenjun Xia, Chuang Niu, Wenxiang Cong, Ge Wang
[22nd Mar., 2023] [arXiv, 2023]
[Paper]
Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models
Suhyeon Lee, Hyungjin Chung, Minyoung Park, Jonghyuk Park, Wi-Sun Ryu, Jong Chul Ye
[15th Mar., 2023] [arXiv, 2023]
[Paper]
Fast Diffusion Sampler for Inverse Problems by Geometric Decomposition
Hyungjin Chung, Suhyeon Lee, Jong Chul Ye
[10th Mar., 2023] [arXiv, 2023]
[Paper]
Diffusion Denoising for Low-Dose-CT Model
Runyi Li
[27th Jan., 2023] [arXiv, 2023]
[Paper]
Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction
Gyutaek Oh, Jeong Eun Lee, Jong Chul Ye
[8th Jan., 2023] [arXiv, 2023]
[Paper]
Universal Generative Modeling in Dual-domain for Dynamic MR Imaging
Chuanming Yu, Yu Guan, Ziwen Ke, Dong Liang, Qiegen Liu
[15th Dec., 2022] [arXiv, 2022]
[Paper]
SPIRiT-Diffusion: SPIRiT-driven Score-Based Generative Modeling for Vessel Wall imaging
Chentao Cao, Zhuo-Xu Cui, Jing Cheng, Sen Jia, Hairong Zheng, Dong Liang, Yanjie Zhu
[14th Dec., 2022] [arXiv, 2022]
[Paper]
One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging
Bin Huang, Liu Zhang, Shiyu Lu, Boyu Lin, Weiwen Wu, Qiegen Liu
[7th Dec., 2022] [arXiv, 2022]
[Paper]
DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction
Jiaming Liu, Rushil Anirudh, Jayaraman J. Thiagarajan, Stewart He, K. Aditya Mohan, Ulugbek S. Kamilov, Hyojin Kim
[22nd Nov., 2022] [arXiv, 2022]
[Paper]
Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models
Hyungjin Chung, Dohoon Ryu, Michael T. McCann, Marc L. Klasky, Jong Chul Ye
[19th Nov., 2022] [arXiv, 2022]
[Paper] [Github]
Patch-Based Denoising Diffusion Probabilistic Model for Sparse-View CT Reconstruction
Wenjun Xia, Wenxiang Cong, Ge Wang
[18th Nov., 2022] [arXiv, 2022]
[Paper]
Accelerated Motion Correction for MRI using Score-Based Generative Models
Brett Levac, Ajil Jalal, Jonathan I. Tamir
[1st Nov., 2022] [arXiv, 2022]
[Paper]
Self-Score: Self-Supervised Learning on Score-Based Models for MRI Reconstruction
Zhuo-Xu Cui, Chentao Cao, Shaonan Liu, Qingyong Zhu, Jing Cheng, Haifeng Wang, Yanjie Zhu, Dong Liang
[2nd Sep., 2022] [IEEE TMI, 2022]
[Paper]
One-shot Generative Prior in Hankel-k-space for Parallel Imaging Reconstruction
Hong Peng, Chen Jiang, Jing Cheng, Minghui Zhang, Shanshan Wang, Dong Liang, Qiegen Liu
[15th Aug., 2022] [arXiv, 2022]
[Paper] [Github]
High-Frequency Space Diffusion Models for Accelerated MRI
Chentao Cao, Zhuo-Xu Cui, Shaonan Liu, Dong Liang, Yanjie Zhu
[10th Aug., 2022] [arXiv, 2022]
[Paper]
Adaptive Diffusion Priors for Accelerated MRI Reconstruction
Salman UH Dar, Şaban Öztürk, Yilmaz Korkmaz, Gokberk Elmas, Muzaffer Özbey, Alper Güngör, Tolga Çukur
[12th Jul., 2022] [arXiv, 2022]
[Paper]
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, Jong Chul Ye
[2nd Jun., 2022] [NeurIPS, 2022]
[Paper]
WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction
Zongjiang Tu, Die Liu, Xiaoqing Wang, Chen Jiang, Pengwen Zhu, Minghui Zhang, Shanshan Wang, Dong Liang, Qiegen Liu
[8th May, 2022] [arXiv, 2022]
[Paper] [Github]
Towards performant and reliable undersampled MR reconstruction via diffusion model sampling
Cheng Peng, Pengfei Guo, S. Kevin Zhou, Vishal Patel, Rama Chellappa
[8th Mar., 2022] [MICCAI, 2022]
[Paper] [Github]
Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction
Yutong Xie, Quanzheng Li
[5th Mar., 2022] [MICCAI, 2022]
[Paper] [Github]
MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation
Guanxiong Luo, Martin Heide, Martin Uecker
[3rd Feb., 2022] [arXiv, 2022]
[Paper] [Github]
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction
Hyungjin Chung, Byeongsu Sim, Jong Chul Ye
[9th Dec., 2021] [CVPR, 2021]
[Paper]
Solving Inverse Problems in Medical Imaging with Score-Based Generative Models
Yang Song, Liyue Shen, Lei Xing, Stefano Ermon
[15th Nov., 2021] [ICLR, 2022]
[Paper] [Github]
Score-based diffusion models for accelerated MRI
Hyungjin Chung, Jong chul Ye
[8th Oct., 2021] [MIA, 2021]
[Paper] [Github]
Robust Compressed Sensing MRI with Deep Generative Priors
Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G. Dimakis, Jonathan I. Tamir
[3rd Aug., 2021] [NeurIPS, 2021]
[Paper] [Github]
Augmenting medical image classifiers with synthetic data from latent diffusion models
Luke W. Sagers, James A. Diao, Luke Melas-Kyriazi, Matthew Groh, Pranav Rajpurkar, Adewole S. Adamson, Veronica Rotemberg, Roxana Daneshjou, Arjun K. Manrai
[23rd Aug., 2023] [arXiv, 2023]
[Paper]
Synthetic Augmentation with Large-scale Unconditional Pre-training
Jiarong Ye, Haomiao Ni, Peng Jin, Sharon X. Huang, Yuan Xue
[8th Aug., 2023] [MICCAI, 2023] \
[Paper] [GitHub]
Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis
Lingting Zhu, Zeyue Xue, Zhenchao Jin, Xian Liu, Jingzhen He, Ziwei Liu, Lequan Yu
[19th Jul., 2023] [arXiv, 2023]
[Paper]
DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI
Hasan A. Bedel, Tolga C¸ ukur
[18th Jul., 2023] [arXiv, 2023]
[Paper] [Github]
Hybrid Neural Diffeomorphic Flow for Shape Representation and Generation via Triplane
Kun Han, Shanlin Sun, Xiaohui Xie
[4th July. 2023] [arXiv, 2023]
[Paper]
Investigating Data Memorization in 3D Latent Diffusion Models for Medical Image Synthesis
Salman Ul Hassan Dar, Arman Ghanaat, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg, Sandy Engelhardt
[3rd July. 2023] [arXiv, 2023]
[Paper]
DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation and Classification in Imbalanced Pathology Image Datasets
Hyun-Jic Oh, Won-Ki Jeong
[25th Jun. 2023] [arXiv, 2023]
[Paper]
DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch Diffusion in Histopathology
Marco Aversa, Gabriel Nobis, Miriam Hägele, Kai Standvoss, Mihaela Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova, Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala
[23th Jun. 2023] [arXiv, 2023]
[Paper]
Aligning Synthetic Medical Images with Clinical Knowledge using Human Feedback
Shenghuan Sun, Gregory M. Goldgof, Atul Butte, Ahmed M. Alaa
[16th Jun., 2023] [arXiv, 2023]
[Paper]
Diffusion Models for Realistic CT Image Generation
Maialen Stephens Txurio, Karen López-Linares Román, Andrés Marcos-Carrión, Pilar Castellote-Huguet, José M. Santabárbara-Gómez, Iván Macía Oliver, Miguel A. González Ballester
[31th May, 2023] [KES, 2023]
[Paper]
Evaluating the feasibility of using Generative Models to generate Chest X-Ray Data
Muhammad Danyal Malik, Danish Humair
[30th May, 2023] [arXiv, 2023]
[Paper] [Github]
Conditional Diffusion Models for Semantic 3D Medical Image Synthesis
Zolnamar Dorjsembe, Hsing-Kuo Pao, Sodtavilan Odonchimed, Furen Xiao
[29th May, 2023] [arXiv, 2023]
[Paper]
GenerateCT: Text-Guided 3D Chest CT Generation
Ibrahim Ethem Hamamci, Sezgin Er, Enis Simsar, Alperen Tezcan, Ayse Gulnihan Simsek, Furkan Almas, Sevval Nil Esirgun, Hadrien Reynaud, Sarthak Pati, Christian Bluethgen, Bjoern Menze
[25th May, 2023] [arXiv, 2023]
[Paper] [Github]
Beware of diffusion models for synthesizing medical images -- A comparison with GANs in terms of memorizing brain tumor images
Muhammad Usman Akbar, Wuhao Wang, Anders Eklund
[12th May, 2023] [arXiv, 2023]
[Paper]
Generation of Structurally Realistic Retinal Fundus Images with Diffusion Models
Sojung Go, Younghoon Ji, Sang Jun Park, Soochahn Lee
[11th May, 2023] [arXiv, 2023]
[Paper]
Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation
David Stojanovski, Uxio Hermida, Pablo Lamata, Arian Beqiri, Alberto Gomez
[9th May, 2023] [arXiv, 2023]
[Paper] [Github]
Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model
Taofeng Xie, Chentao Cao, Zhuoxu Cui, Yu Guo, Caiying Wu, Xuemei Wang, Qingneng Li, Zhanli Hu, Tao Sun, Ziru Sang, Yihang Zhou, Yanjie Zhu, Dong Liang, Qiyu Jin, Guoqing Chen, Haifeng Wang
[6th May, 2023] [arXiv, 2023]
[Paper]
High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using Semantic Diffusion Model
Xuan Zhao, Benjamin Hou
[2nd May, 2023] [arXiv, 2023]
[Paper]
Denoising Diffusion Medical Models
Pham Ngoc Huy, Tran Minh Quan
[19th Apr., 2023] [arXiv, 2023]
[Paper]
Mask-conditioned latent diffusion for generating gastrointestinal polyp images
Roman Macháček, Leila Mozaffari, Zahra Sepasdar, Sravanthi Parasa, Pål Halvorsen, Michael A. Riegler, Vajira Thambawita
[11th Apr., 2023] [arXiv, 2023]
[Paper] [Github]
MedGen3D: A Deep Generative Framework for Paired 3D Image and Mask Generation
Kun Han, Yifeng Xiong, Chenyu You, Pooya Khosravi, Shanlin Sun, Xiangyi Yan, James Duncan, Xiaohui Xie
[8th Apr., 2023] [arXiv, 2023]
[Paper]
Towards Realistic Ultrasound Fetal Brain Imaging Synthesis
Michelle Iskandar, Harvey Mannering, Zhanxiang Sun, Jacqueline Matthew, Hamideh Kerdegari, Laura Peralta, Miguel Xochicale
[8th Apr., 2023] [arXiv, 2023]
[Paper] [Github]
2D Medical Image Synthesis Using Transformer-based Denoising Diffusion Probabilistic Model
Shaoyan Pan, Tonghe Wang, Richard L J Qiu, Marian Axente, Chih-Wei Chang, Junbo Peng, Ashish B Patel, Joseph Shelton, Sagar A Patel, Justin Roper
[4th Apr., 2023] [Physics in Medicine & Biology, 2023]
[Paper]
ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology Image Analysis
Xuan Xu, Saarthak Kapse, Rajarsi Gupta, Prateek Prasanna
[3rd Apr., 2023] [arXiv, 2023]
[Paper]
DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image Synthesis with Sparse-view Measurement Embedding
Xiaoyue Li, Kai Shang, Gaoang Wang, Mark D. Butala
[28th Mar., 2023] [arXiv, 2023]
[Paper]
CoLa-Diff: Conditional Latent Diffusion Model for Multi-Modal MRI Synthesis
Lan Jiang, Ye Mao, Xi Chen, Xiangfeng Wang, Chao Li
[24th Mar., 2023] [arXiv, 2023]
[Paper]
Feature-Conditioned Cascaded Video Diffusion Models for Precise Echocardiogram Synthesis
Hadrien Reynaud, Mengyun Qiao, Mischa Dombrowski, Thomas Day, Reza Razavi, Alberto Gomez, Paul Leeson, Bernhard Kainz
[22nd Mar., 2023] [arXiv, 2023]
[Paper] [Github]
NASDM: Nuclei-Aware Semantic Histopathology Image Generation Using Diffusion Models
Aman Shrivastava, P. Thomas Fletcher
[20th Mar., 2023] [arXiv, 2023]
[Paper]
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis
Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer
[20th Mar., 2023] [arXiv, 2023]
[Paper]
Efficiently Training Vision Transformers on Structural MRI Scans for Alzheimer's Disease Detection
Nikhil J. Dhinagar, Sophia I. Thomopoulos, Emily Laltoo, Paul M. Thompson
[14th Mar., 2023] [arXiv, 2023]
[Paper]
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, Luc Van Gool
[13th Mar., 2023] [arXiv, 2023]
[Paper]
Bi-parametric prostate MR image synthesis using pathology and sequence-conditioned stable diffusion
Shaheer U. Saeed, Tom Syer, Wen Yan, Qianye Yang, Mark Emberton, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Yipeng Hu
[3rd Mar., 2023] [arXiv, 2023]
[Paper]
Denoising Diffusion Probabilistic Models for Generation of Realistic Fully-Annotated Microscopy Image Data Sets
Dennis Eschweiler, Johannes Stegmaier
[2nd Jan., 2023] [arXiv, 2023]
[Paper] [Github] [Synthetic Dataset]
Conversion of the Mayo LDCT Data to Synthetic Equivalent through the Diffusion Model for Training Denoising Networks with a Theoretically Perfect Privacy
Yongyi Shi, Ge Wang
[16th Jan., 2023] [arXiv, 2023]
[Paper]
Generating Realistic 3D Brain MRIs Using a Conditional Diffusion Probabilistic Model
Wei Peng, Ehsan Adeli, Qingyu Zhao, Kilian M Pohl
[15th Dec., 2022] [MICCAI, 2023]
[Paper]
SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation
Jee Seok Yoon, Chenghao Zhang, Heung-Il Suk, Jia Guo, Xiaoxiao Li
[16th Dec., 2022] [arXiv, 2022]
[Paper]
Diffusion Probabilistic Models beat GANs on Medical Images
Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
[14th Dec., 2022] [arXiv, 2022]
[Paper]
Improving dermatology classifiers across populations using images generated by large diffusion models
Luke W. Sagers, James A. Diao, Matthew Groh, Pranav Rajpurkar, Adewole S. Adamson, Arjun K. Manrai
[23rd Nov., 2022] [NeurIPS Workshop, 2022]
[Paper]
Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for Vision Decoding
Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, Juan Helen Zhou
[13th Nov., 2022] [arXiv, 2022]
[Paper]
An unobtrusive quality supervision approach for medical image annotation
Sonja Kunzmann, Mathias Öttl, Prathmesh Madhu, Felix Denzinger, Andreas Maier
[11th Nov., 2022] [arXiv, 2022]
[Paper]
Medical Diffusion: Denoising Diffusion Probabilistic Models for 3D Medical Image Generation
Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
[7th Nov., 2022] [arXiv, 2022]
[Paper] [Github]
Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems
Kai Packhäuser, Lukas Folle, Florian Thamm, Andreas Maier
[2nd Nov., 2022] [arXiv, 2022]
[Paper]
Spot the fake lungs: Generating Synthetic Medical Images using Neural Diffusion Models
Hazrat Ali, Shafaq Murad, Zubair Shah
[2nd Nov., 2022] [arXiv, 2022]
[Paper]
A Morphology Focused Diffusion Probabilistic Model for Synthesis of Histopathology Images
Puria Azadi Moghadam, Sanne Van Dalen, Karina C. Martin, Jochen Lennerz, Stephen Yip, Hossein Farahani, Ali Bashashati
[27th Sep., 2022] [arXiv, 2022]
[Paper]
Brain Imaging Generation with Latent Diffusion Models
Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F da Costa, Virginia Fernandez, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
[15th Sep., 2022] [MICCAI Workshop, 2022]
[Paper]
A Diffusion Model Predicts 3D Shapes from 2D Microscopy Images
Dominik J. E. Waibel, Ernst Röell, Bastian Rieck, Raja Giryes, Carsten Marr
[30th Aug., 2022] [arXiv, 2022]
[Paper] [Github]
Diffusion Deformable Model for 4D Temporal Medical Image Generation
Boah Kim, Jong Chul Ye
[27th Jan., 2022] [MICCAI, 2022]
[Paper] [Github]
Three-Dimensional Medical Image Synthesis with Denoising Diffusion Probabilistic Models
Zolnamar Dorjsembe, Sodtavilan Odonchimed, Furen Xiao
[22nd Apr., 2022] [MIDL, 2022]
[Paper] [Github]
TauPETGen: Text-Conditional Tau PET Image Synthesis Based on Latent Diffusion Models
Se-In Jang, Cristina Lois, Emma Thibault, J. Alex Becker, Yafei Dong, Marc D. Normandin, Julie C. Price, Keith A. Johnson, Georges El Fakhri, Kuang Gong
[21st Jun., 2023] [arXiv, 2023]
[Paper]
Pay Attention: Accuracy Versus Interpretability Trade-off in Fine-tuned Diffusion Models
Mischa Dombrowski, Hadrien Reynaud, Johanna P. Müller, Matthew Baugh, Bernhard Kainz
[31st Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Medical diffusion on a budget: textual inversion for medical image generation
Bram de Wilde, Anindo Saha, Richard P.G. ten Broek, Henkjan Huisman
[23rd Mar., 2023] [arXiv, 2023]
[Paper]
Diffusion-based Data Augmentation for Skin Disease Classification: Impact Across Original Medical Datasets to Fully Synthetic Images
Mohamed Akrout, Bálint Gyepesi, Péter Holló, Adrienn Poór, Blága Kincső, Stephen Solis, Katrina Cirone, Jeremy Kawahara, Dekker Slade, Latif Abid, Máté Kovács, István Fazekas
[12th Jan., 2023] [arXiv, 2023]
[Paper]
RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier Van der Sluijs, Małgorzata Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P. Langlotz, Akshay Chaudhari
[23rd Nov., 2022] [arXiv, 2022]
[Paper]
Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains
Pierre Chambon, Christian Bluethgen, Curtis P. Langlotz, Akshay Chaudhari
[9th Oct., 2022] [arXiv, 2022]
[Paper]
FSDiffReg: Feature-wise and Score-wise Diffusion-guided Unsupervised Deformable Image Registration for Cardiac Images
Yi Qin, Xiaomeng Li
[22nd Jul., 2023] [arXiv, 2023]
[Paper] [Github]
DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models
Boah Kim, Inhwa Han, Jong Chul Ye
[9th Dec., 2021] [ECCV, 2022]
[Paper]
Improving Nonalcoholic Fatty Liver Disease Classification Performance With Latent Diffusion Models
Romain Hardy, Cornelia Ilin, Joe Klepich, Ryan Mitchell, Steve Hall, Jericho Villareal
[13th Jul., 2023] [arXiv, 2023]
[Paper]
Interpretable Alzheimer's Disease Classification Via a Contrastive Diffusion Autoencoder
Ayodeji Ijishakin, Ahmed Abdulaal, Adamos Hadjivasiliou, Sophie Martin, James Cole
[5th Jun., 2023] [arXiv, 2023]
[Paper]
DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification
Yijun Yang, Huazhu Fu, Angelica I. Aviles-Rivero, Carola-Bibiane Schönlieb, Lei Zhu
[19th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Diffusion-Based Hierarchical Multi-Label Object Detection to Analyze Panoramic Dental X-rays
Ibrahim Ethem Hamamci, Sezgin Er, Enis Simsar, Anjany Sekuboyina, Mustafa Gundogar, Bernd Stadlinger, Albert Mehl, Bjoern Menze
[11th Mar., 2023] [arXiv, 2023]
[Paper] [Github]
Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report
Pouria Rouzrokh, Bardia Khosravi, Shahriar Faghani, Mana Moassefi, Sanaz Vahdati, Bradley J. Erickson
[21st Oct., 2022] [arXiv, 2022]
[Paper] [GitHub] [Online Tool]
InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model
Jueqi Wang, Jacob Levman, Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, M. Jorge Cardoso, Razvan Marinescu
[23rd Aug, 2023] [MICCAI, 2023]
[Paper] [GitHub]
Self-similarity-based super-resolution of photoacoustic angiography from hand-drawn doodles
Yuanzheng Ma, Wangting Zhou, Rui Ma, Sihua Yang, Yansong Tang, Xun Guan
[2nd May, 2023] [arXiv, 2023]
[Paper] [GitHub]
DisC-Diff: Disentangled Conditional Diffusion Model for Multi-Contrast MRI Super-Resolution
Ye Mao, Lan Jiang, Xi Chen, Chao Li
[24th Mar., 2023] [arXiv, 2023]
[Paper]
LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion
Long Bai, Tong Chen, Yanan Wu, An Wang, Mobarakol Islam, Hongliang Ren
[5th July, 2023] [arXiv, 20223
[Paper] [GitHub]
On enhancing the robustness of Vision Transformers: Defensive Diffusion
Raza Imam, Muhammad Huzaifa, Mohammed El-Amine Azz
[14th May, 2023] [arXiv, 2023]
[Paper] [GitHub]
Fight Fire With Fire: Reversing Skin Adversarial Examples by Multiscale Diffusive and Denoising Aggregation Mechanism
Yongwei Wang, Yuan Li, Zhiqi Shen
[22nd Aug., 2022] [arXiv, 2022]
[Paper]
A Comprehensive Survey on Generative Diffusion Models for Structured Data
Heejoon Koo, To Eun Kim
[7th Jun., 2023] [arXiv, 2023]
[Paper]
Restoration of Time-Series Medical Data with Diffusion Model
Jiwoon Lee, Cheolsoo Park
[6th Oct., 2022] [ICCE-Asia, 2022]
[Paper]
Content-Preserving Diffusion Model for Unsupervised AS-OCT image Despeckling
Li Sanqian, Higashita Risa, Fu Huazhu, Li Heng, Niu Jingxuan, Liu Jiang
[30th June, 2023] [arXiv, 2023]
[Paper]
Anatomically constrained CT image translation for heterogeneous blood vessel segmentation
Giammarco La Barbera, Haithem Boussaid, Francesco Maso, Sabine Sarnacki, Laurence Rouet, Pietro Gori, Isabelle Bloch
[4th Oct., 2022] [BMVC, 2022]
[Paper]
Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F Da Costa, Petru-Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T. Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardos
[7th Jun., 2022] [MICCAI, 2022]
[Paper]
MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion
Hyungjin Chung, Eun Sun Lee, Jong Chul Ye
[23rd Mar., 2022] [IEEE TMI, 2022]
[Paper]
Unsupervised 3D out-of-distribution detection with latent diffusion models
Mark S. Graham, Walter Hugo Lopez Pinaya, Paul Wright, Petru-Daniel Tudosiu, Yee H. Mah, James T. Teo, H. Rolf Jäger, David Werring, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
[7th Jul., 2023] [MICCAI, 2023] \
[Paper] [GitHub]
DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy
Yiwen Zhang, Chuanpu Li, Liming Zhong, Zeli Chen, Wei Yang, Xuetao Wang
[28th Jun., 2023] [arXiv, 2023]
[Paper]
Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading
Matthias Keicher, Matan Atad, David Schinz, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Nassir Navab
[21st Mar., 2023] [arXiv, 2023]
[Paper]
AugDiff: Diffusion based Feature Augmentation for Multiple Instance Learning in Whole Slide Image
Zhuchen Shao, Liuxi Dai, Yifeng Wang, Haoqian Wang, Yongbing Zhang
[11th Mar., 2023] [arXiv, 2023]
[Paper]
Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline
Xuhang Chen, Baiying Lei, Chi-Man Pun, Shuqiang Wang
[11th Mar., 2023] [arXiv, 2023]
[Paper]
Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement
Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang
[8th Mar., 2023][arXiv, 2023]
[Paper]
DiffusionCT: Latent Diffusion Model for CT Image Standardization
Md Selim, Jie Zhang, Michael A. Brooks, Ge Wang, Jin Chen
[20th Jan., 2023] [arXiv, 2023]
[Paper]
Diffusion Model based Semi-supervised Learning on Brain Hemorrhage Images for Efficient Midline Shift Quantification
Shizhan Gong, Cheng Chen, Yuqi Gong, Nga Yan Chan, Wenao Ma, Calvin Hoi-Kwan Mak, Jill Abrigo, Qi Dou
[1st Jan., 2023] [arXiv, 2023]
[Paper]