/KIR_graph

KIR genotyping tool

Primary LanguagePython

Graph-KIR

Graph-KIR is a tool for KIR (Killer Immunoglobulin-like Receptor) typing using short read FASTQ files.

Paper Link: (Not yet published)

Biorxiv: https://doi.org/10.1101/2023.11.29.568665

github tag: v1.0

This repo contains two main programs:

  1. graphkir - Main Typing Tool

    graphkir reads FASTQ files, both from CSV or directly via command-line arguments. It outputs copy number estimations in a CSV file called cohort.cn.tsv and allele typing results in cohort.allele.tsv by default. More details about its algorithm and concept can be found in the paper.

  2. kirpipe - KIR Typing Pipeline

    kirpipe is an aggregation tool that automates the KIR typing pipeline. It includes five published tools: graphkir, PING, Sakaue's KIR, T1K, and KIR*KPI.

    (Note: Currently, kirpipe requires podman or docker to execute)

Requirements

Before using Graph-KIR, ensure you meet these requirements:

  • Python >= 3.10

You have the option to use one of the following containerization tools:

  • podman
  • docker
  • singularity

You can choose to use it by specifying the engine. i.e. --engine podman.

If none of these containerization tools are installed, you can run Graph-KIR locally --engine local. However, you'll need to install the following external packages:

  • MUSCLE >= 5.1 (required only for index building stage)
  • HISAT2 >= 2.2.1
  • samtools >= 1.15.1
  • BWA-MEM >= 0.7.17 (needed only for the WGS extraction stage)
  • wget (necessary for downloading hs37d5 in the WGS extraction stage)

Usage (Main)

Download the pre-built Graph-KIR index:

wget https://graphkir.c4lab.tw/download/example_index.tar.gz
tar xvf example_index.tar.gz
# If kirpipe is used, rename it
# ln -s example_index graphkir_alpha

Install Graph-KIR:

git clone https://github.com/linnil1/KIR_graph
cd KIR_graph
pip install .
graphkir --help

Run Graph-KIR (If the index does not exist, it will be auto-built):

graphkir \
    --thread 2 \
    --r1 example/test00.read1.fq.gz \
    --r2 example/test00.read2.fq.gz \
    --r1 example/test01.read1.fq.gz \
    --r2 example/test01.read2.fq.gz \
    --index-folder example_index \
    --output-folder example_data \
    --output-cohort-name example_data/cohort

Or, if you have an input CSV file (e.g., cohort.csv) containing the list of samples:

graphkir \
    --thread 2 \
    --input-csv example/cohort.csv \
    --index-folder example_index \
    --allele-method exonfirst \
    --output-cohort-name example_data/cohort \
    --log-level DEBUG

The CSV should have four columns:

  • name: The output prefix of the sample.
  • r1 and r2: Paths to the fastq files.
  • cnfile: You can assign a copy number file for the sample. Leave it empty for Graph-KIR to assign automatically.
name,r1,r2,cnfile
example_data/linnil1.00,example/test00.read1.fq.gz,example/test00.read2.fq.gz,example/test00.assigned.cn.tsv
example_data/linnil1.01,example/test01.read1.fq.gz,example/test01.read2.fq.gz,

The final result that includes all the samples are aggrate into one file with prefix output-cohort-name. In the above sample, example_data/cohort.cn.tsv and example_data/cohort.allele.tsv are generated.

Some useful arguments include:

  • --cn-cohort: Estimate copy number while considering the entire cohort.
  • --cn-3dl3-not-diploid: Do not assume that the copy number of 3DL3 is equal to 2.
  • --allele-strategy exonfirst: Perform typing using the exon part of reads instead of the entire sequence.
  • You can manually assess the copy number estimation results using the --plot option.
  • Adjust the distribution deviation with the --cn-dist-dev argument, for example, --cn-dist-dev 0.06.

Usage (kirpipe pipeline for other KIR tools)

ln -s ../example/test00.read1.fq.gz example_data/test.00.read.1.fq.gz
ln -s ../example/test00.read2.fq.gz example_data/test.00.read.2.fq.gz
ln -s ../example/test01.read1.fq.gz example_data/test.01.read.1.fq.gz
ln -s ../example/test01.read2.fq.gz example_data/test.01.read.2.fq.gz
kirpipe example_data/test.{} --tools t1k

Usage (for paper)

If you want to develop or rerun the code related to the Graph-KIR research, check out the research/ directory.

Most of these scripts are not automated and require manual configuration or linking to your cohort (e.g., HPRC). You may also need to adjust arguments to run Graph-KIR with different configurations.

Requirements:

  • pip install .[paper]
  • podman (other container tools are not tested)

To build the document, use: mkdocs serve

  • research/kg_main.py My work for simulated data (100 samples)
  • research/kg_real.py My work for real data (HPRC)
  • research/other_kir.py Run other KIR tools for HPRC or 100 samples
  • research/kg_dev_* Scripts for development purposes (not used in the paper)
  • research/kg_eval_* Compare the results

Related tools

  • star_allele_comp: https://github.com/linnil1/star_alleles_comparator

    The star allele comparator allows KIR/HLA alleles as input. This module is inspired by research/kg_eval.py.

  • pyhlamsa: https://github.com/linnil1/pyHLAMSA

    A tool for easily manipulating MSA data. It reads from IPD-KIR or IPD-HLA database formats, merges exons, calculates consensus, writes data in specific formats, and more.

  • filenameflow: https://github.com/linnil1/FileNameFlow

    A lightweight pipeline tool that executes pipelines. It uses filenames as auto-versioning keys, which is convenient when tuning arguments or switching parts frequently. Note that in this research, Version 0.0.7 is used, so clone the repository and run git checkout v0.0.7 && pip install ..

Changelog

  • github tag: v1.0: Initial release on bioRxiv and open-sourced the Graph-KIR code.
  • latest: Current Version
    • Improved the algorithm for assuming KIR3DL3 is diploid. We now treat KIR3DL3's depth as a probability of 2x depth instead of assuming an exact 2x depth, which enhances the clustering results for copy number estimation. Special thanks to Ting-Jian Wang, one of the authors of the original paper.

LICENSE

LGPL

::: graphkir