Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020).
- Python 3
- PyTorch 1.6
- Open3d 0.8
- TensorBoard 2.3
- NumPy
- SciPy
- Pillow
- tqdm
Get the code.
git clone https://github.com/graspnet/graspnet-baseline.git
cd graspnet-baseline
Install packages via Pip.
pip install -r requirements.txt
Compile and install pointnet2 operators (code adapted from votenet).
cd pointnet2
python setup.py install
Compile and install knn operator (code adapted from pytorch_knn_cuda).
cd knn
python setup.py install
Install graspnetAPI for evaluation.
git clone https://github.com/graspnet/graspnetAPI.git
cd graspnetAPI
pip install .
Tolerance labels are not included in the original dataset, and need additional generation. Make sure you have downloaded the orginal dataset from GraspNet. The generation code is in dataset/generate_tolerance_label.py. You can simply generate tolerance label by running the script: (--dataset_root
and --num_workers
should be specified according to your settings)
cd dataset
sh command_generate_tolerance_label.sh
Or you can download the tolerance labels from Google Drive/Baidu Pan and run:
mv tolerance.tar dataset/
cd dataset
tar -xvf tolerance.tar
Training examples are shown in command_train.sh. --dataset_root
, --camera
and --log_dir
should be specified according to your settings. You can use TensorBoard to visualize training process.
Testing examples are shown in command_test.sh, which contains inference and result evaluation. --dataset_root
, --camera
, --checkpoint_path
and --dump_dir
should be specified according to your settings. Set --collision_thresh
to -1 for fast inference.
The pretrained weights can be downloaded from:
checkpoint-rs.tar
[Google Drive] [Baidu Pan]checkpoint-kn.tar
[Google Drive] [Baidu Pan]
checkpoint-rs.tar
and checkpoint-kn.tar
are trained using RealSense data and Kinect data respectively.
A demo program is provided for grasp detection and visualization using RGB-D images. You can refer to command_demo.sh to run the program. --checkpoint_path
should be specified according to your settings (make sure you have downloaded the pretrained weights). The output should be similar to the following example:
Try your own data by modifying get_and_process_data()
in demo.py. Refer to doc/example_data/ for data preparation. RGB-D images and camera intrinsics are required for inference. factor_depth
stands for the scale for depth value to be transformed into meters. You can also add a workspace mask for denser output.
Results "In repo" report the model performance with single-view collision detection as post-processing. In evaluation we set --collision_thresh
to 0.01.
Evaluation results on RealSense camera:
Seen | Similar | Novel | |||||||
---|---|---|---|---|---|---|---|---|---|
AP | AP0.8 | AP0.4 | AP | AP0.8 | AP0.4 | AP | AP0.8 | AP0.4 | |
In paper | 27.56 | 33.43 | 16.95 | 26.11 | 34.18 | 14.23 | 10.55 | 11.25 | 3.98 |
In repo | 47.47 | 55.90 | 41.33 | 42.27 | 51.01 | 35.40 | 16.61 | 20.84 | 8.30 |
Evaluation results on Kinect camera:
Seen | Similar | Novel | |||||||
---|---|---|---|---|---|---|---|---|---|
AP | AP0.8 | AP0.4 | AP | AP0.8 | AP0.4 | AP | AP0.8 | AP0.4 | |
In paper | 29.88 | 36.19 | 19.31 | 27.84 | 33.19 | 16.62 | 11.51 | 12.92 | 3.56 |
In repo | 42.02 | 49.91 | 35.34 | 37.35 | 44.82 | 30.40 | 12.17 | 15.17 | 5.51 |
Please cite our paper in your publications if it helps your research:
@inproceedings{fang2020graspnet,
title={GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping},
author={Fang, Hao-Shu and Wang, Chenxi and Gou, Minghao and Lu, Cewu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)},
pages={11444--11453},
year={2020}
}
All data, labels, code and models belong to the graspnet team, MVIG, SJTU and are freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an email at fhaoshu at gmail_dot_com and cc lucewu at sjtu.edu.cn .