Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo Cameras
-
Notice that this work is based on the original OpenVSLAM (renamed now as stella-vslam), which is a derivative work of ORB-SLAM2 without any modification to core algorithms. It was declared in conflict with ORB-SLAM2 (see: stella-cv/stella_vslam#249).
-
For the courtesy of ORB-SLAM2, the granted license of this project is GNU General Public License v3.0. For commercial purposes of this project, please contact department Augmented Vision (https://www.dfki.de/en/web/research/research-departments/augmented-vision), DFKI (German Research Center for Artificial Intelligence), Germany.
-
If you have any technical questions regarding to the implementation, please kindly leave an issue.
[1] F. Shu, et al. "Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo Cameras". 2022. (https://arxiv.org/abs/2207.06058) updated arXiv v2 with supplementary materials.
[2] F. Shu, et al. "Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction." International Symposium on Mixed and Augmented Reality (ISMAR, Poster). IEEE, 2021. (https://arxiv.org/abs/2108.04281)
[3] Y. Xie, et al. "PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image." British Machine Vision Conference (BMVC), 2021. (https://arxiv.org/abs/2110.11219)
-
fr3_structure_texture_far (dataset TUM RGB-D)
-
living_room_traj0 and living_room_traj2 (dataset ICL-NUIM)
-
MH_04_difficult (dataset EuRoC MAV)
-
Sequence_00 (data_odometry_gray, dataset KITTI)
- Point-Line SLAM is generalized. It can be conducted on all kind of data image sequences.
- For running Planar SLAM, segmentation needs to be done beforehand (see details in below).
- ORB vocabulary is already attached to this repository, see: ./orb_vocab/
-
For utilizing line segment (LSD + LBD): we develop the code using OpenCV 3.4.6, in which we restored the implementation of LSD because it was removed. Hence, if you use OpenCV 3+, you may need to restore the LSD code yourself.
However, later version of OpenCV restored the LSD in commit 9b768727080b3279c244ad595115b1d5126d32ed (01.10.2021). You are able to find this information under git-history of OpenCV.
-
Other dependencies (g2o, Eigen3, Pangolin, DBoW2, Ubuntu 18.04) are in general similar to ORB-SLAM2.
-
We integrated Graph-Cut RANSAC C++ implementation to our project, which is under BSD license. See https://github.com/danini/graph-cut-ransac.
-
This project does not support using ROS and Docker, at least we haven't tested, for now.
-
An additional plane detector:
This work take PlaneRecNet [3] as the instance planar segmentation CNN (only instance segmentation is used, predicted depth is not used by far). Example segmentation images for different datasets will be provided with a downloading link, see section below -> Run Point-Plane SLAM.
You could also segment images yourself, code please see: https://github.com/EryiXie/PlaneRecNet
mkdir build && cd build
cmake \
-DBUILD_WITH_MARCH_NATIVE=ON \
-DUSE_PANGOLIN_VIEWER=ON \
-DUSE_SOCKET_PUBLISHER=OFF \
-DUSE_STACK_TRACE_LOGGER=ON \
-DBOW_FRAMEWORK=DBoW2 \
-DBUILD_TESTS=OFF \
..
make -j4
(or, highlight and filter (gcc) compiler messages)
make -j4 2>&1 | grep --color -iP "\^|warning:|error:|"
make -j4 2>&1 | grep --color -iP "\^|error:|"
$ ./build/run_tum_rgbd_slam
Allowed options:
-h, --help produce help message
-v, --vocab arg vocabulary file path
-d, --data-dir arg directory path which contains dataset
-c, --config arg config file path
--frame-skip arg (=1) interval of frame skip
--no-sleep not wait for next frame in real time
--auto-term automatically terminate the viewer
--debug debug mode
--eval-log store trajectory and tracking times for evaluation
-p, --map-db arg store a map database at this path after SLAM
- If you have a crash right after running SLAM (due to some kind of corruption error), try to de-activate BUILD_WITH_MARCH NATIVE (in ccmake .).
./build/run_tum_rgbd_slam \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/TUM_RGBD/rgbd_dataset_freiburg3_long_office_household \
-c ./example/tum_rgbd/TUM_RGBD_mono_3.yaml
./build/run_kitti_slam \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/KITTI/odometry/data_odometry_gray/dataset/sequences/00/ \
-c ./example/kitti/KITTI_mono_00-02.yaml
./build/run_euroc_slam \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/EuRoC_MAV/MH_01_easy/mav0 \
-c ./example/euroc/EuRoC_mono.yaml
./build/run_tum_rgbd_slam_with_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/TUM_RGBD/rgbd_dataset_freiburg3_long_office_household \
-c ./example/tum_rgbd/TUM_RGBD_mono_3.yaml
./build/run_tum_rgbd_slam_with_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/ICL_NUIM/traj3_frei_png \
-c ./example/icl_nuim/mono.yaml
./build/run_euroc_slam_with_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/EuRoC_MAV/MH_04_difficult/mav0 \
-c ./example/euroc/EuRoC_mono.yaml
./build/run_kitti_slam_with_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/KITTI/odometry/data_odometry_gray/dataset/sequences/00/ \
-c ./example/kitti/KITTI_mono_00-02.yaml
First, pre-build a map using (monocular or RGB-D) SLAM:
./build/run_tum_rgbd_slam_with_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/TUM_RGBD/rgbd_dataset_freiburg3_long_office_household \
-c ./example/tum_rgbd/TUM_RGBD_rgbd_3.yaml \
--map-db freiburg3_long_office_household.msg
Second, run the (monocular) image localization mode, notice that give the path to the RGB image folder:
./build/run_image_localization_point_line \
-v ./orb_vocab/orb_vocab.dbow2 \
-i /data/TUM_RGBD/rgbd_dataset_freiburg3_long_office_household/rgb \
-c ./example/tum_rgbd/TUM_RGBD_mono_3.yaml \
--map-db freiburg3_long_office_household.msg
-
We provide instance planar segmentation masks and *.txt file, which can be download here (OneDrive shared):
-
TUM RGB-D dataset, besides the folder which saves rgb image, you need to provide folder which saves the segmentation masks and a mask.txt file.
./data/TUM_RGBD/rgbd_dataset_freiburg3_long_office_household/ | |____./rgb/ |____./depth/ . |____./rgb.txt . . |____./mask/ % given by our download link |____./mask.txt % given by our download link
-
ICL-NUIM dataset, we customize it the same way as TUM RGB-D dataset.
./data/ICL_NUIM/living_room_traj0_frei_png/ | |____./rgb/ |____./depth/ . . |____./mask/ % given by our download link . |____./rgb.txt % given by our download link |____./depth.txt % given by our download link |____./mask.txt % given by our download link |____./associations.txt % given by our download link |____./groundtruth.txt % given by our download link
-
EuRoC MAV dataset, we provide necessary segmentation masks in the downloading link, save the segmentation masks under folder cam0, e.g.:
/data/EuRoC_MAV/V1_02_medium/mav0/cam0/seg/ % given by our download link
- Mapping parameters can be adjusted, see planar_mapping_parameters.yaml.
./build/run_slam_planeSeg \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/TUM_RGBD/rgbd_dataset_freiburg3_structure_texture_far \
-c ./example/tum_rgbd/TUM_RGBD_mono_3.yaml
./build/run_slam_planeSeg \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/ICL_NUIM/living_room_traj0_frei_png \
-c ./example/icl_nuim/mono.yaml
Only V1 and V2 image sequences, due to segmentation CNN failure on factory data sequences MH_01-05, as mentioned in the paper [1].
./build/run_euroc_slam_planeSeg \
-v ./orb_vocab/orb_vocab.dbow2 \
-d /data/EuRoC_MAV/V1_01_easy/mav0 \
-c ./example/euroc/EuRoC_stereo.yaml
It can be easily activated in planar_mapping_parameters.yaml -> Threshold.draw_dense_pointcloud: true.
This is a toy demo (RGB-D only).
Evaluation with EVO tool (https://github.com/MichaelGrupp/evo)
evo_ape tum /data/TUM_RGBD/rgbd_dataset_freiburg3_structure_texture_far/groundtruth.txt ./keyframe_trajectory.txt -p --plot_mode=xy -a --verbose -s
Important flags:
--align or -a = SE(3) Umeyama alignment (rotation, translation)
--align --correct_scale or -as = Sim(3) Umeyama alignment (rotation, translation, scale)
--correct_scale or -s = scale alignment
gdb ./build/run_slam_planeSeg
run -v ./orb_vocab/orb_vocab.dbow2 -d /data/TUM_RGBD/rgbd_dataset_freiburg3_structure_texture_far -c ./example/tum_rgbd/TUM_RGBD_rgbd_3.yaml