maazmb/UAV-waypoint-guidance-matlab
"4D TRAJECTORY GENERATION FOR GUIDANCE MODULE OF A UAV FOR A GATE TO GATE FLIGHT IN PRESENCE OF TURBULENCE", International Journal of Advanced Robotic Systems, 2016, DOI: 10.5772/64063. publication description: Robotic air vehicles are used increasingly in delivering goods especially for safety-of-life applications. This paper discusses a guidance module for trajectory generation of such vehicles. An offline algorithm is developed using a navigation model to produce the required trajectory in the form of time-tagged longitude, latitude and altitude. The process is an essential requirement when an operator has to program a robotic vehicle to travel on the desired course. This problem is addressed scarcely in the relevant literature. The waypoints are generated for all phases of flight and then modified to cater for the wind disturbance parameters obtained from current meteorological information. The waypoints are uploaded to the vehicle’s flight control system memory and reside there for the vehicle to follow. This paper also renders the generated trajectory on Google Earth® using Matlab/Simulink® to test the closed-loop performance. Furthermore, a Dryden wind model is utilized to generate a modified trajectory for turbulent conditions. An operator can make adjustments in the required initial heading angle so the vehicle lands at its destination even in turbulent weather. An empirical formula is also proposed for this purpose. Further work includes design of a control system to follow the generated waypoints.
Matlab