/OvCa-scRNAseq-Julia

ovarian cancer treatment resistance single-cell RNAseq analysis pipeline in Julia

Primary LanguageJupyter NotebookMIT LicenseMIT

OvCa-scRNAseq-Julia

ovarian cancer treatment resistance single-cell RNAseq analysis pipeline in Julia

Overview

This repository contains code used in the analysis of single-cell RNA sequencing. These codes are written in Julia (tested on versions 1.9.3) and are presented in Jupyter Notebook. Code blocks within the Jupyter Notebook are intended to be run independently.

Requirements

  • Julia (version 1.9.3)
  • Jupyter Notebook

Package requirements

  • DataFrames.jl
  • CSV.jl
  • StatsPlots.jl
  • Statistics.jl
  • StatsBase.jl
  • Plots.jl
  • Makie.jl
  • IJulia.jl
  • LinearAlgebra.jl
  • MultivariateStats.jl
  • MultipleTesting.jl
  • NearestNeighbors.jl
  • RCall.jl
  • PyCall.jl
  • SparseArrays.jl
  • SCTransform.jl
  • UMAP.jl
  • TSne.jl
  • PlotlyJS.jl
  • MatrixMarket.jl
  • Distances.jl
  • CairoMakie.jl
  • HypothesisTests.jl
  • Leiden.jl
  • CellScopes.jl
  • AutomaticSingleCellToolbox.jl
  • SingleCellProjections.jl

Project contents

  • README.md : this file with information about the repository.
  • A2780_ASCT.ipynb : using AutomaticSingleCellToolbox.jl to run scRNA-seq analysis.
  • A2780_CellScopes.ipynb : using CellScopes.jl to run scRNAseq but it doesn't execute at scale_object function.
  • A2780_SingleCellProjections.ipynb : using SingleCellProjections.jl to run scRNA-seq analysis but it doesn't have clustering function.
  • A2780 : a folder of A2780 raw data.
  • Data : raw data with genes and cells names and metadata stored in csv and raw data stored in h5.

Acknowledgments

We would like to thank Meghan C. Ferrall-Fairbanks and Adriana Del Pino Herrera for support and guidance.