Error in glm.fit running vignette
jvpoulos opened this issue · 1 comments
jvpoulos commented
Running the vignette (or example 2.1. in the CRAN manual) yields the error when calling lmtp_tmle
:
Loading required package: nnls
Error in glm.fit(x = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, :
object 'fit' not found
R session info:
> sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.10
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] nnls_1.4 lmtp_0.9.1.9000
loaded via a namespace (and not attached):
[1] progressr_0.7.0 codetools_0.2-16 listenv_0.8.0 future_1.21.0 digest_0.6.27 foreach_1.5.1 assertthat_0.2.1 parallelly_1.25.0
[9] R6_2.5.0 future.apply_1.7.0 origami_1.0.3 data.table_1.14.0 gam_1.20 generics_0.1.0 splines_4.0.2 iterators_1.0.13
[17] tools_4.0.2 parallel_4.0.2 yaml_2.2.1 abind_1.4-5 compiler_4.0.2 SuperLearner_2.0-28 globals_0.14.0
nt-williams commented
Hi @jvpoulos, it looks like you're using the development version of the package (0.9.1.9000) but running an example from the current release version on CRAN. The development version has a new parameter intervention_type
that requires being specified to "mtp"
if the shift function is a modified treatment policy (as is the case with example 2.1), issue #94 . Looking at the manual from the development version you should see:
# Example 2.1
# Longitudinal setting, time-varying continuous exposure bounded by 0,
# time-varying covariates, and a binary outcome with no loss-to-follow-up.
# Interested in the effect of a treatment policy where exposure decreases by
# one unit at every time point if an observations observed exposure is greater
# than or equal to 2. The true value under this intervention is about 0.305.
head(sim_t4)
a <- c("A_1", "A_2", "A_3", "A_4")
tv <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))
d <- function(data, trt) {
a <- data[[trt]]
(a - 1) * (a - 1 >= 1) + a * (a - 1 < 1)
}
# BONUS: progressr progress bars!
progressr::handlers(global = TRUE)
lmtp_tmle(sim_t4, a, "Y", time_vary = tv, shift = d, folds = 2, intervention_type = "mtp")