open-mmlab/mmsegmentation

Help!!!【Mask2former】All predictions are colored by full colors in visualization!

Opened this issue · 1 comments

I am doing instance segmentation, and Mask2former performs great, aAcc reachs almost 99% which is unbelievable.
image

When i use visualization=dict(type='SegVisualizationHook',draw=True, interval=10)) to visualize the result, the predictions are fully colored instead of the target area.

How could the wrong prediction gives such wonderful class? Do you guys know how to fix it?

  • Dataset is valid: Performs normally on the the other methods that contained in MMsegmentation

  • Config file: mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py

image
image
image
image

Config file1 :

_base_ = [
    '../_base_/default_runtime.py', '../_base_/datasets/ade20k_640x640.py'
]

pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_20220317-55b0104a.pth'  # noqa

crop_size = (640, 640)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255,
    size=crop_size)
num_classes = 7

depths = [2, 2, 18, 2]
model = dict(
    type='EncoderDecoder',
    data_preprocessor=data_preprocessor,
    backbone=dict(
        type='SwinTransformer',
        pretrain_img_size=384,
        embed_dims=128,
        depths=depths,
        num_heads=[4, 8, 16, 32],
        window_size=12,
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.,
        attn_drop_rate=0.,
        drop_path_rate=0.3,
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        with_cp=False,
        frozen_stages=-1,
        init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
    decode_head=dict(
        type='Mask2FormerHead',
        in_channels=[128, 256, 512, 1024],
        strides=[4, 8, 16, 32],
        feat_channels=256,
        out_channels=7,
        num_classes=num_classes,
        num_queries=100,
        num_transformer_feat_level=3,
        align_corners=False,
        pixel_decoder=dict(
            type='mmdet.MSDeformAttnPixelDecoder',
            num_outs=3,
            norm_cfg=dict(type='GN', num_groups=32),
            act_cfg=dict(type='ReLU'),
            encoder=dict(  # DeformableDetrTransformerEncoder
                num_layers=6,
                layer_cfg=dict(  # DeformableDetrTransformerEncoderLayer
                    self_attn_cfg=dict(  # MultiScaleDeformableAttention
                        embed_dims=256,
                        num_heads=8,
                        num_levels=3,
                        num_points=4,
                        im2col_step=64,
                        dropout=0.0,
                        batch_first=True,
                        norm_cfg=None,
                        init_cfg=None),
                    ffn_cfg=dict(
                        embed_dims=256,
                        feedforward_channels=1024,
                        num_fcs=2,
                        ffn_drop=0.0,
                        act_cfg=dict(type='ReLU', inplace=True))),
                init_cfg=None),
            positional_encoding=dict(  # SinePositionalEncoding
                num_feats=128, normalize=True),
            init_cfg=None),
        enforce_decoder_input_project=False,
        positional_encoding=dict(  # SinePositionalEncoding
            num_feats=128, normalize=True),
        transformer_decoder=dict(  # Mask2FormerTransformerDecoder
            return_intermediate=True,
            num_layers=9,
            layer_cfg=dict(  # Mask2FormerTransformerDecoderLayer
                self_attn_cfg=dict(  # MultiheadAttention
                    embed_dims=256,
                    num_heads=8,
                    attn_drop=0.0,
                    proj_drop=0.0,
                    dropout_layer=None,
                    batch_first=True),
                cross_attn_cfg=dict(  # MultiheadAttention
                    embed_dims=256,
                    num_heads=8,
                    attn_drop=0.0,
                    proj_drop=0.0,
                    dropout_layer=None,
                    batch_first=True),
                ffn_cfg=dict(
                    embed_dims=256,
                    feedforward_channels=2048,
                    num_fcs=2,
                    act_cfg=dict(type='ReLU', inplace=True),
                    ffn_drop=0.0,
                    dropout_layer=None,
                    add_identity=True)),
            init_cfg=None),
        loss_cls=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=False,
            loss_weight=2.0,
            reduction='mean',
            class_weight=[1.0] * num_classes + [0.1]),
        loss_mask=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=True,
            reduction='mean',
            loss_weight=5.0),
        loss_dice=dict(
            type='mmdet.DiceLoss',
            use_sigmoid=True,
            activate=True,
            reduction='mean',
            naive_dice=True,
            eps=1.0,
            loss_weight=5.0),
        train_cfg=dict(
            num_points=12544,
            oversample_ratio=3.0,
            importance_sample_ratio=0.75,
            assigner=dict(
                type='mmdet.HungarianAssigner',
                match_costs=[
                    dict(type='mmdet.ClassificationCost', weight=2.0),
                    dict(
                        type='mmdet.CrossEntropyLossCost',
                        weight=5.0,
                        use_sigmoid=True),
                    dict(
                        type='mmdet.DiceCost',
                        weight=5.0,
                        pred_act=True,
                        eps=1.0)
                ]),
            sampler=dict(type='mmdet.MaskPseudoSampler'))),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))

# dataset config
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', reduce_zero_label=True),
    dict(
        type='RandomChoiceResize',
        scales=[int(x * 0.1 * 640) for x in range(5, 21)],
        resize_type='ResizeShortestEdge',
        max_size=2560),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs')
]
train_dataloader = dict(batch_size=4, dataset=dict(pipeline=train_pipeline))

# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
    'backbone': dict(lr_mult=0.1, decay_mult=1.0),
    'backbone.patch_embed.norm': backbone_norm_multi,
    'backbone.norm': backbone_norm_multi,
    'absolute_pos_embed': backbone_embed_multi,
    'relative_position_bias_table': backbone_embed_multi,
    'query_embed': embed_multi,
    'query_feat': embed_multi,
    'level_embed': embed_multi
}
custom_keys.update({
    f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
    for stage_id, num_blocks in enumerate(depths)
    for block_id in range(num_blocks)
})
custom_keys.update({
    f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
    for stage_id in range(len(depths) - 1)
})
# optimizer
optimizer = dict(
    type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999))
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=optimizer,
    clip_grad=dict(max_norm=0.01, norm_type=2),
    paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))

# learning policy
param_scheduler = [
    dict(
        type='PolyLR',
        eta_min=0,
        power=0.9,
        begin=0,
        end=160000,
        by_epoch=False)
]

# training schedule for 160k
train_cfg = dict(
    type='IterBasedTrainLoop', max_iters=160000, val_interval=5000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(
        type='CheckpointHook', by_epoch=False, interval=5000,
        save_best='mIoU'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='SegVisualizationHook',draw=True, interval=10))

# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

Config file2 :

_base_ = ['./mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py']
pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth'  # noqa

model = dict(
    backbone=dict(
        embed_dims=192,
        num_heads=[6, 12, 24, 48],
        init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
    decode_head=dict(num_queries=100, in_channels=[192, 384, 768, 1536]))