/pathTracking

[IROS 2022] Learning Time-optimized Path Tracking with or without Sensory Feedback

Primary LanguagePythonOtherNOASSERTION

Learning Time-optimized Path Tracking with or without Sensory Feedback

IROS 2022 arXiv GitHub issues

This repository contains the code and the neural networks used for our paper "Learning Time-optimized Path Tracking with or without Sensory Feedback".

tracking_picture

Installation

The code is written in python and does not need to be compiled. Simply clone the repository with

git clone https://github.com/translearn/pathTracking.git

The required dependencies can be installed by running:

pip install -r requirements.txt

Pretrained networks

We provide pretrained networks for the robot systems shown in the figure above. To track paths from a random dataset with an industrial robot run

python tracking/evaluate.py --use_gui --checkpoint=industrial/no_balancing/random  

Other networks can be executed by adjusting the checkpoint argument. All available networks are listed below:

Robot system Configuration Dataset Checkpoint
Kuka iiwa no additional objectives random --checkpoint=industrial/no_balancing/random
target point --checkpoint=industrial/no_balancing/target_point
ball balancing --checkpoint=industrial/no_balancing/ball_balancing
Kuka with balance board no balancing reward ball balancing --checkpoint=industrial/balancing/no_balancing_reward
balancing reward --checkpoint=industrial/balancing/balancing_reward
ARMAR-6 no additional objectives random --checkpoint=humanoid/armar6/random
ARMAR-4 no additional objectives, fixed base and legs random --checkpoint=humanoid/armar4/no_balancing/random
target point --checkpoint=humanoid/armar4/no_balancing/target_point
no balancing reward, fixed legs target point --checkpoint=humanoid/armar4/balancing/no_balancing_reward
balancing reward, fixed legs --checkpoint=humanoid/armar4/balancing/balancing_reward_fixed_legs
balancing reward, controlled legs --checkpoint=humanoid/armar4/balancing/balancing_reward_controlled_legs

Training

Networks can also be trained from scratch. For instance, path tracking with an industrial robot can be learned by running

python tracking/train.py --logdir=tracking_training --name=industrial_no_balancing_random --robot_scene=0 --online_trajectory_time_step=0.1 --hidden_layer_activation=swish --online_trajectory_time_step=0.1 --online_trajectory_duration=16.0 --obstacle_scene=0 --target_link_offset="[0, 0, 0.126]" --last_layer_activation=tanh --no_log_std_activation --use_controller_target_velocities --spline_dir=industrial/random/train --spline_u_arc_start_range="[0.0, 0.8]" --spline_u_arc_diff_min=0.2 --spline_normalize_duration --spline_termination_max_deviation=0.25 --obs_spline_n_next=7 --obs_spline_add_length --obs_spline_add_distance_per_knot --spline_distance_max_reward=2.0 --spline_deviation_max_threshold=0.25 --punish_spline_max_deviation --spline_max_deviation_max_punishment=0.9 --punish_spline_mean_deviation --spline_mean_deviation_max_punishment=0.9  --spline_deviation_weighting_factors="[1.0, 1.0, 1.0, 0.9, 0.8, 0.7, 0.6]"  --batch_size_factor=6.0 --spline_braking_extra_time_steps=0 --terminate_on_robot_stop --solver_iterations=50 --iterations_per_checkpoint=50  --time=500

Publication

The corresponding publication is available at https://arxiv.org/abs/2203.01968.

Video

Disclaimer

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.