This is a bunch of simple python scripts to convert between different datasets` annotation formats.
python matlab_to_pacal_voc.py <path to .xml file> <path to output directory>
This script converts Caltech dataset`s annotations from matlab array to pascalVoc.
It will save .xml file for every image to annotations
directory in <path to output directory>
.
python yolo_to_voc.py <path to directory with annotations in yolo format> <path to output direcotry> <path to directory with images>
Currently this script supports only one class and you can change it on 49 line.
python pascalVoc2coco.py <path to direcoty with pascalVoc annotations> <path to output json file>
This script converts annotations from pascalVoc format to coco.
You can change info about your dataset in script.
python sof_to_json.py <path to .mat input file> <path to json output file>
This script converts SoF annotations from matlab array to json in this format:
[
{
"id": "AbdA",
"sequence": "00001",
"gender": "m",
"age": 31,
"lightning": "i",
"view": "fr",
"cropped": "nc",
"emotion": "no",
"year": 2016,
"part": "2",
"glasses": 1,
"headscarf": false,
"illumination": true,
"filename": "AbdA_00001_m_31_*",
"landmarks": [17 elemts: {"x": x, "y": y}],
"estimated_landmarks": [17 bools],
"face_ROI": {"x": x, "y": y, "width": width, "height": height},
"glasses_ROI": {"x": x, "y": y, "width": width, "height": height}
}
}
]
python rename_pscalVoc_images.py <directory with pascalVoc annotations>
This script will rename images with annotations in pascalVoc format with numbers.
Maybe it is useless but it makes dataset look prettier.