qqgg12's Stars
CyC2018/CS-Notes
:books: 技术面试必备基础知识、Leetcode、计算机操作系统、计算机网络、系统设计
RohenWong/DeepLearning-augmentation-on-MRI
This project uses Variational Autoencoders (VAEs) to perform data augmentation on breast cancer MRI from the ISPY-2 clinical trial. We evaluate the augmentation by training U-Net segmentation models.
sajadn/Exemplar-VAE
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
GYee/CV_interviews_Q-A
CV算法岗知识点及面试问答汇总,主要分为计算机视觉、机器学习、图像处理和 C++基础四大块,一起努力向offers发起冲击!
ithuangqing/java
收集有助于java学习者提高技术和认知的资源(文章,教程,网站等),java学习者必备!:books:
miloyip/json-tutorial
从零开始的 JSON 库教程
SANCHES-Pedro/adni_preprocessing
ADNI t1-weighted MRI preprocessing
sayannath/ViT-Image-Classification
Image Classification with Vision Transformer - Keras
Aglinskas/pub-CVAE-MRI-ASD
Code and materials for paper "Contrastive machine learning reveals the structure of neuroanatomical variation within Autism"
zjchen77/Contrastve-VAE
Contrastive-VAE is a model that combine the traditional Variational Auto-Encoder and contrastive learning techniques.
abidlabs/contrastive_vae
Contrastive Variational Autoencoders
westman-neuroimaging-group/brainage-prediction-mri
Predicting the age of the brain with minimally processed T1-weighted MRI data
hnguyentt/cnn-visualization-keras-tf2
Filter visualization, Feature map visualization, Guided Backprop, GradCAM, Guided-GradCAM, Deep Dream
samson6460/tf_keras_gradcamplusplus
tensorflow.keras implementation of gradcam and gradcam++
jcsyl/news-analyst
对舆情事件进行词云展示,对评论进行情感分析和观点抽取。情感分析基于lstm 的三分类,观点抽取基于AP 算法的聚类和MMR的抽取
lixiang0/WEB_KG
爬取百度百科中文页面,抽取三元组信息,构建中文知识图谱
shangranq/PGGAN_3D_Brain
generate 3D brain MRI using Progressive Growing GAN
HPI-DeepLearning/voxelGAN
3D Medical Image Semantic Segmentation
manicman1999/StyleGAN2-Tensorflow-2.0
StyleGAN 2 in Tensorflow 2.0
snowkylin/tensorflow-handbook
简单粗暴 TensorFlow 2 | A Concise Handbook of TensorFlow 2 | 一本简明的 TensorFlow 2 入门指导教程
scutan90/DeepLearning-500-questions
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06