Jae-Woo Choi1*, Youngwoo Yoon1*, Hyobin Ong1, 2, Jaehong Kim1, Minsu Jang1, 2 (*equal contribution)
1 Electronics and Telecommunications Research Institute, 2 University of Science and Technology
We introduce a system for automatically quantifying performance of task planning for home-service agents. Task planners are tested on two pairs of datasets and simulators: 1) ALFRED and AI2-THOR, 2) an extension of Watch-And-Help and VirtualHome. Using the proposed benchmark system, we perform extensive experiments with LLMs and prompts, and explore several extentions of the baseline planner.
Ubuntu 14.04+ is required. The scripts were developed and tested on Ubuntu 22.04 and Python 3.8.
You can use WSL-Ubuntu on Windows 10/11.
-
Clone the whole repo.
$ git clone {repo_url}
-
Setup a virtual environment.
$ conda create -n {env_name} python=3.8 $ conda activate {env_name}
-
Install PyTorch (2.0.0) first (see https://pytorch.org/get-started/locally/).
# exemplary install command for PyTorch 2.0.0 with CUDA 11.7 $ pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 --index-url https://download.pytorch.org/whl/cu117
-
Install python packages in
requirements.txt
.$ pip install -r requirements.txt
$ cd alfred/data
$ sh download_data.sh json
$ python src/evaluate.py --config-name=config_alfred
You can override the configuration. We used Hydra for configuration management.
$ python src/evaluate.py --config-name=config_alfred planner.model=EleutherAI/gpt-neo-125M
$ python src/evaluate.py --config-name=config_alfred alfred.x_display='1'
$ python src/evaluate.py --config-name=config_alfred alfred.eval_portion_in_percent=100 prompt.num_examples=18
Please run startx.py
script before running ALFRED experiment on headless servers. Below script uses 1 for the X_DISPLAY id, but you can use different ids such as 0.
$ sudo python3 alfred/scripts/startx.py 1
- Download the VirtualHome simulator v2.2.2 and extract it
$ cd {project_root}/virtualhome/simulation/unity_simulator/
$ wget http://virtual-home.org//release/simulator/v2.0/v2.2.2/linux_exec.zip
$ unzip linux_exec.zip
- Open a new terminal and run VirtualHome simulator
$ cd {project_root}
$ ./virtualhome/simulation/unity_simulator/linux_exec.x86_64
- Open another terminal and evaluate.
$ cd {project_root}
$ python src/evaluate.py --config-name=config_wah
- You can override the configuration. We used Hydra for configuration management.
$ cd {project_root}
$ python src/evaluate.py --config-name=config_wah planner.model_name=EleutherAI/gpt-neo-1.3B prompt.num_examples=10
- Open a new terminal and run Xserver
$ cd {project}/virtualhome
$ sudo python helper_scripts/startx.py $display_num
- Open another terminal and run unity simulator
$ cd {project}/virtualhome
$ DISPLAY=:$display_num ./simulation/unity_simulator/linux_exec.x86_64 -batchmode
- Open another terminal and evaluate
$ cd {project_root}
$ python src/evaluate.py --config-name=config_wah_headless
$ python src/evaluate.py --config-name=config_wah prompt.select_method=same_task
$ python src/evaluate.py --config-name=config_wah prompt.select_method=topk
$ python src/evaluate.py --config-name=config_alfred planner.use_predefined_prompt=True
Make sure you have preprocessed data (run ALFRED benchmarking at least once).
$ python src/alfred/exmaine_alfred_data.py
The output text resource resource/alfred_train_text_samples.txt
can be used for finetuning.
You can find the WAH-NL data, which is our extension of WAH, in ./dataset
folder.
-
Running out of disk space for Huggingface models
- You can set the cache folder to be in another disk.
$ export TRANSFORMERS_CACHE=/mnt/otherdisk/.hf_cache/
- You can set the cache folder to be in another disk.
-
I have encountered 'cannot find X server with xdpyinfo' in running ALFRED experiments.
- Please try another x_display number (this should be a string; e.g., '1') in the config file.
$ python src/evaluate.py --config-name=config_alfred alfred.x_display='1'
- Please try another x_display number (this should be a string; e.g., '1') in the config file.
@inproceedings{choi2024lota,
title={LoTa-Bench: Benchmarking Language-oriented Task Planners for Embodied Agents},
author={Choi, Jae-Woo and Yoon, Youngwoo and Ong, Hyobin and Kim, Jaehong and Jang, Minsu},
booktitle={International Conference on Learning Representations (ICLR)},
year={2024}
}