/semantic-abstraction

[CoRL 2022] This repository contains code for generating relevancies, training, and evaluating Semantic Abstraction.

Primary LanguagePythonMIT LicenseMIT

Semantic Abstraction: Open-World 3D Scene Understanding from 2D Vision-Language Models

Huy Ha, Shuran Song

Columbia University, New York, NY, United States

Conference on Robot Learning 2022

Project Page | Arxiv

HuggingFace Spaces

Our approach, Semantic Abstraction, unlocks 2D VLM's capabilities to 3D scene understanding. Trained with a limited synthetic dataset, our model generalizes to unseen classes in a novel domain (i.e., real world), even for small objects like “rubiks cube”, long-tail concepts like “harry potter”, and hidden objects like the “used N95s in the garbage bin”. Unseen classes are bolded.


This repository contains code for generating relevancies, training, and evaluating Semantic Abstraction. It has been tested on Ubuntu 18.04 and 20.04, NVIDIA GTX 1080, NVIDIA RTX A6000, NVIDIA GeForce RTX 3080, and NVIDIA GeForce RTX 3090.

If you find this codebase useful, consider citing:

@inproceedings{ha2022semabs,
    title={Semantic Abstraction: Open-World 3{D} Scene Understanding from 2{D} Vision-Language Models},
    author = {Ha, Huy and Song, Shuran},
    booktitle={Proceedings of the 2022 Conference on Robot Learning},
    year={2022}
}

If you have any questions, please contact me at huy [at] cs [dot] columbia [dot] edu.

Table of Contents

Setup

Environment

Create the conda environment

conda env create -f semabs.yml

Models

Download the model checkpoints (~3.5GB) by running this command at the root of the repo

wget https://semantic-abstraction.cs.columbia.edu/downloads/models.tar.lz4  -O - | tar --use-compress-program=lz4 -xf -  -C ./ 

You should have the following directory structure

tree /path/to/semantic-abstraction/models
/path/to/semantic-abstraction/models
├── chefer_et_al
│   ├── ovssc
│   │   ├── args.pkl
│   │   ├── ovssc.pth
│   │   └── ovssc_eval_stats.pkl
│   └── vool
│       ├── args.pkl
│       ├── vool.pth
│       └── vool_eval_stats.pkl
├── clipspatial
│   └── vool
│       ├── args.pkl
│       ├── vool.pth
│       └── vool_eval_stats.pkl
├── ours
│   ├── ovssc
│   │   ├── args.pkl
│   │   ├── ovssc.pth
│   │   └── ovssc_eval_stats.pkl
│   └── vool
│       ├── args.pkl
│       ├── vool.pth
│       └── vool_eval_stats.pkl
└── semaware
    ├── ovssc
    │   ├── args.pkl
    │   ├── ovssc.pth
    │   └── ovssc_eval_stats.pkl
    └── vool
        ├── args.pkl
        ├── vool.pth
        └── vool_eval_stats.pkl

11 directories, 21 files

Dataset (Optional)

To run the evaluation inference or training, you will need the dataset.

Download the dataset (~269GB) by running the following at the root of the repo

wget https://semantic-abstraction.cs.columbia.edu/downloads/dataset.tar.lz4  -O - | tar --use-compress-program=lz4 -xf -  -C ./

We also preprocessed the (~53GB) NYU dataset for training and evaluation

wget https://semantic-abstraction.cs.columbia.edu/downloads/nyu_ovssc.tar.lz4  -O - | tar --use-compress-program=lz4 -xf -  -C ./

Multi-scale Relevancy Extractor

Play around with the multi-scale relevancy extractor on HuggingFace Spaces.

To run the multi-scale relevancy on GPU locally with the provided image from matterport

python generate_relevancy.py image

which will output

Try passing in your own image!

python generate_relevancy.py image --help

 Usage: generate_relevancy.py image [OPTIONS] [FILE_PATH]                                        
                                                                                                 
 Generates a multi-scale relevancy for image at `file_path`.                                     
                                                                                                 
╭─ Arguments ───────────────────────────────────────────────────────────────────────────────────╮
│   file_path      [FILE_PATH]  path of image file [default: matterport.png]                    │
╰───────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────╮
│ --labels         TEXT  list of object categories (e.g.: "nintendo switch")                    │
│                        [default: basketball jersey, nintendo switch, television, ping pong    │
│                        table, vase, fireplace, abstract painting of a vespa, carpet, wall]    │
│ --prompts        TEXT  prompt template to use with CLIP.                                      │
│                        [default: a photograph of a {} in a home.]                             │
│ --help                 Show this message and exit.                                            │
╰───────────────────────────────────────────────────────────────────────────────────────────────╯

Evaluation

Summarize

The evaluation result dataframes (*_eval_stats*.pkl) are provided along with the model checkpoints. To summarize them in a table

python summarize.py
                                    OVSSC THOR
                          ╷            ╷              ╷             ╷
  Approach                │ Novel Room │ Novel Visual │ Novel Vocab │ Novel Class
 ═════════════════════════╪════════════╪══════════════╪═════════════╪═════════════
  Semantic Aware          │       32.2 │         31.9 │        20.2 │         0.0
  SemAbs + [Chefer et al] │       26.6 │         24.3 │        17.8 │        12.2
 ─────────────────────────┼────────────┼──────────────┼─────────────┼─────────────
  Ours                    │       40.1 │         36.4 │        33.4 │        37.9
                          ╵            ╵              ╵             ╵
                                            FULL VOOL THOR
                          ╷                  ╷            ╷              ╷             ╷
  Approach                │ Spatial Relation │ Novel Room │ Novel Visual │ Novel Vocab │ Novel Class
 ═════════════════════════╪══════════════════╪════════════╪══════════════╪═════════════╪═════════════
  Semantic Aware          │ in               │       15.0 │         14.7 │         7.6 │         1.8
                          │ on               │        9.0 │          8.9 │        11.4 │         4.5
                          │ on the left of   │       11.2 │         11.1 │        14.4 │         4.0
                          │ behind           │       12.8 │         12.6 │        14.1 │         2.2
                          │ on the right of  │       13.1 │         13.0 │        11.5 │         3.4
                          │ in front of      │       11.2 │         11.1 │         9.3 │         2.2
                          │ mean             │       12.1 │         11.9 │        11.4 │         3.0
 ─────────────────────────┼──────────────────┼────────────┼──────────────┼─────────────┼─────────────
  ClipSpatial             │ in               │        9.6 │          8.6 │         7.1 │         3.3
                          │ on               │       14.1 │         12.1 │        18.5 │        20.0
                          │ on the left of   │       11.0 │          9.4 │        14.2 │        13.2
                          │ behind           │       11.3 │          9.9 │        14.1 │         8.9
                          │ on the right of  │       12.1 │         10.6 │        16.2 │        11.5
                          │ in front of      │       12.3 │         10.3 │        15.7 │         9.9
                          │ mean             │       11.7 │         10.1 │        14.3 │        11.2
 ─────────────────────────┼──────────────────┼────────────┼──────────────┼─────────────┼─────────────
  SemAbs + [Chefer et al] │ in               │       11.8 │         11.1 │         5.7 │         2.1
                          │ on               │        7.0 │          6.7 │        11.3 │         7.1
                          │ on the left of   │        9.5 │          9.3 │        13.7 │         4.9
                          │ behind           │        7.6 │          7.6 │        10.6 │         2.5
                          │ on the right of  │        9.2 │          9.2 │        11.0 │         3.9
                          │ in front of      │        9.4 │          9.0 │        12.0 │         3.3
                          │ mean             │        9.1 │          8.8 │        10.7 │         4.0
 ─────────────────────────┼──────────────────┼────────────┼──────────────┼─────────────┼─────────────
  Ours                    │ in               │       17.8 │         17.5 │         8.5 │         7.3
                          │ on               │       21.0 │         18.0 │        27.2 │        28.1
                          │ on the left of   │       22.0 │         20.3 │        27.7 │        25.1
                          │ behind           │       19.9 │         18.0 │        22.8 │        16.7
                          │ on the right of  │       23.2 │         21.7 │        28.1 │        22.1
                          │ in front of      │       21.5 │         19.4 │        25.8 │        19.1
                          │ mean             │       20.9 │         19.2 │        23.4 │        19.7

                                                    OVSSC NYU                                                    
                    ╷         ╷       ╷      ╷        ╷       ╷      ╷      ╷       ╷      ╷      ╷      ╷       
  Approach          │ Ceiling │ Floor │ Wall │ Window │ Chair │  Bed │ Sofa │ Table │  Tvs │ Furn │ Objs │ Mean  
 ═══════════════════╪═════════╪═══════╪══════╪════════╪═══════╪══════╪══════╪═══════╪══════╪══════╪══════╪══════ 
  Ours (Supervised) │    22.6 │  46.1 │ 33.9 │   35.9 │  23.9 │ 55.9 │ 37.9 │  19.7 │ 30.8 │ 39.8 │ 27.7 │ 34.0  
 ───────────────────┼─────────┼───────┼──────┼────────┼───────┼──────┼──────┼───────┼──────┼──────┼──────┼────── 
  Ours (Zeroshot)   │    13.7 │  17.3 │ 13.5 │   25.2 │  15.2 │ 33.3 │ 31.5 │  12.0 │ 23.7 │ 25.6 │ 19.9 │ 21.0  
                    ╵         ╵       ╵      ╵        ╵       ╵      ╵      ╵       ╵      ╵      ╵      ╵      

Run inference

To run inference, make sure the dataset is downloaded.

Then, regenerate the evaluation result dataframes by running the evaluation script.

For OVSSC

python -m torch.distributed.run --nnodes=1 --nproc_per_node=1 eval.py --task ovssc  --file_path dataset/  --gpus 0 --load models/ours/ovssc/ovssc.pth

Inference can be sped up by using more than one GPU. For instance, to use GPU 0, 1, 2, and 3, use --nproc_per_node=4 and --gpus 0 1 2 3.

For OVSSC on NYU

python -m torch.distributed.run --nnodes=1 --nproc_per_node=1 eval.py --task ovssc  --file_path nyu_ovssc/ --gpus 0 --load models/ours/ovssc/ovssc.pth

Similarly, for VOOL

python -m torch.distributed.run --nnodes=1 --nproc_per_node=1 eval.py --task vool  --file_path dataset/  --gpus 0 --load models/ours/vool/vool.pth

Visualization

The visualize.py script takes as input the scene pickle file and the network checkpoint.

The pickle file should be a dictionary with the following keys and types

rgb: np.ndarray # shape h x w x 3
depth: np.ndarray # shape h x w
img_shape: Tuple[int, int]
cam_intr: np.ndarray # shape 4 x 4
cam_extr: np.ndarray # shape 4 x 4
ovssc_obj_classes: List[str]
descriptions: List[List[str]]

After being loaded, rgb and depth will be resized to img_shape, which matches the image dimensions in cam_intr. Each element in descriptions is a list containing the target object name, spatial preposition and reference object name respectively. We provide some example scene pickle files from Habitat Matterport 3D and ARKitScenes in scene_files/.

Visualizing OVSSC generates a .mp4 video of the completion, along with .obj meshes, while visualizing VOOL generates .mp4 videos along with .ply pointclouds for each description.

For instance, running

# OVSSC
python visualize.py ovssc-inference scene_files/arkit_vn_poster.pkl models/ours/ovssc/ovssc.pth
python visualize.py ovssc-visualize visualization/arkit_vn_poster
# VOOL
python visualize.py vool-inference scene_files/arkit_vn_poster.pkl models/ours/vool/vool.pth
python visualize.py vool-visualize visualization/arkit_vn_poster

Will output to visualization/arkit_vn_poster, including the following relevancies

and the following VOOL localization for the hair dryer with its wires all tangled up behind the table legs and OVSSC completion:

RGB Localization Completion

While these visualizations are sufficient for debugging, I recommend using the ply and obj files to render in Blender.

Legend Localization

Training

To train the models, make sure the dataset is downloaded.

OVSSC

To retrain our model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_ovssc.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --saliency_config ours

To retrain the semantic aware model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_ovssc.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --approach semantic_aware

To retrain the semantic abstraction + Chefer et. al model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_ovssc.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --approach semantic_aware

VOOL

To retrain our model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_vool.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --saliency_config ours

To retrain the semantic aware model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_vool.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --approach semantic_aware

To retrain the CLIP-Spatial model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_vool.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --approach clip_spatial

To retrain the semantic abstraction + Chefer et. al model

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_vool.py  --file_path dataset/ --log models/new-ours --gpus 0 1 2 3 4 5 6 7 --epochs 200 --approach semantic_aware

Codebase Walkthrough

Below, we've provided a summary of the networks provide, along with how and where our method as described in the paper is implemented. The links in the bullet points below links to specific lines in this codebase. We hope this code annotation helps clarify the network architecture and training procedures.

A few tips for training your semantic abstraction module:

Acknowledgements

We would like to thank Samir Yitzhak Gadre, Cheng Chi and Zhenjia Xu for their helpful feedback and fruitful discussions. This work was supported in part by NSF Award #2143601, #2132519, JP Morgan Faculty Research Award, and Google Research Award. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the sponsors.

Code: