I plan to refactor this project at the end of November but have no time to respond any questions before then.
Features of this project:
- Convertion between cubemap and equirectangular
- Equirectangular to planar
- Pure python implementation and depend only on numpy and scipy
- Vectorization implementation (in most of the place)
c2e
takes 300ms ande2c
takes 160ms on 1.6 GHz Intel Core i5 CPU
- numpy
- scipy
- pillow (for example code to load/save image)
pip install py360convert
Now at everywhere, you can import py360convert
or use the command line tool convert360
.
You can run command line tool to use the functionality. Please See convert360 -h
for detailed. The python script is also an example code to see how to use this as a package in your code.
convert360 --convert e2c --i assert/example_input.png --o assert/example_e2c.png --w 200
Input Equirectangular | Output Cubemap |
---|---|
convert360 --convert c2e --i assert/example_e2c.png --o assert/example_c2e.png --w 800 --h 400
Input Cubemap | Output Equirectangular |
---|---|
You can see the blurring artifacts in the polar region because the equirectangular in above figure are resampled twice (e2c
then c2e
).
convert360 --convert e2p --i assert/example_input.png --o assert/example_e2p.png --w 300 --h 300 --u_deg 120 --v_deg 23
Input Equirectangular | Output Perspective |
---|---|
Convert the given equirectangular to cubemap.
Parameters:
e_img
: Numpy array with shape [H, W, C].face_w
: The width of each cube face.mode
:bilinear
ornearest
.cube_format
: Seec2e
explaination.
Take perspective image from given equirectangular. Parameters:
e_img
: Numpy array with shape [H, W, C].fov_deg
: Field of view given in int or tuple(h_fov_deg, v_fov_deg)
.u_deg
: Horizontal viewing angle in range [-pi, pi]. (- Left / + Right).v_deg
: Vertical viewing angle in range [-pi/2, pi/2]. (- Down/ + Up).out_hw
: Output image(height, width)
in tuple.in_rot_deg
: Inplane rotation.mode
:bilinear
ornearest
.
Convert the given cubemap to equirectangular.
Parameters:
cubemap
: Numpy array or list/dict of numpy array (depend oncube_format
).h
: Output equirectangular height.w
: Output equirectangular width.cube_format
: 'dice' (default) or 'horizon' or 'dict' or 'list'. Telling the format of the givencubemap
.- Say that each face of the cube is in shape of
256 (width) x 256 (height)
- 'dice': a numpy array in shape of
1024 x 768
like below example - 'horizon': a numpy array in shape of
1536 x 256
like below example - 'list': a
list
with 6 elements each of which is a numpy array in shape of256 x 256
. It's just converted from 'horizon' format with one line of code:np.split(cube_h, 6, axis=1)
. - 'dict': a
dict
with 6 elements with keys'F', 'R', 'B', 'L', 'U', 'D'
each of which is a numpy array in shape of256 x 256
. - Please refer to the source code if you still have question about the conversion between formats.
- Say that each face of the cube is in shape of
Example:
import numpy as np
from PIL import Image
import py360convert
cube_dice = np.array(Image.open('assert/demo_cube.png'))
# You can make convertion between supported cubemap format
cube_h = py360convert.cube_dice2h(cube_dice) # the inverse is cube_h2dice
cube_dict = py360convert.cube_h2dict(cube_h) # the inverse is cube_dict2h
cube_list = py360convert.cube_h2list(cube_h) # the inverse is cube_list2h
print('cube_dice.shape:', cube_dice.shape)
print('cube_h.shape:', cube_h.shape)
print('cube_dict.keys():', cube_dict.keys())
print('cube_dict["F"].shape:', cube_dict["F"].shape)
print('len(cube_list):', len(cube_list))
print('cube_list[0].shape:', cube_list[0].shape)
Output:
cube_dice.shape: (768, 1024, 3)
cube_h.shape: (256, 1536, 3)
cube_dict.keys(): dict_keys(['F', 'R', 'B', 'L', 'U', 'D'])
cube_dict["F"].shape: (256, 256, 3)
len(cube_list): 6
cube_list[0].shape: (256, 256, 3)