SmartMocap

Install

Get apptainer

Install apptainer from here

Clone SmartMocap

git clone https://github.com/robot-perception-group/SmartMocap.git
cd SmartMocap

Prepare the container

apptainer build --sandbox ./smartmocap_apptainer apptainer.def
apptainer shell --nv ./smartmocap_apptainer
poetry install

Download data

Download the dataset you want to use and extract the tar file.

Download the pretrained MOP model

Download the MOP pretrained checkpoint file here

Download SMPL model

Download SMPL models from https://smpl.is.tue.mpg.de/

Download vposer model v2.0

Download VPoser model v2.0 from https://smpl-x.is.tue.mpg.de/

Fitting config file

All the hyperparameters and paths need to be set in the file src/mcms/fitting_scripts/fit_config.yml. Descriptions are in the file itself. For quicker execution on a particular dataset, we provide config for each dataset. You still need to set the paths (e.g. dataset path) in these files.

  • SmartMocap data: src/mcms/fitting_scripts/smartmocap_config.yml
  • RICH data: src/mcms/fitting_scripts/rich_config.yml
  • Airpose data: src/mcms/fitting_scripts/airpose_config.yml Replace the content of src/mcms/fitting_scripts/fit_config.yml with the content of any desired dataset config file to run on that dataset.

Fitting

apptainer shell --nv ./smartmocap_apptainer
. .venv/bin/activate
python src/mcms/fitting_scripts/fitting_in_vp_latent_multires.py name_of_the_trial

Results will be in the folder Smartmocap_logs/fittings/name_of_the_trial.

Visualization

Use the scripts src/mcms/eval_scripts/viz.py and src/mcms/eval_scripts/viz_static.py. Edit the data variable in these scripts to pointing to the .npz file generated in the logs directory above.