Small RNA Locus Map for Chlamydomonas reinhardtii
https://www.overleaf.com/17574001mfpjmkhghhtc
Source code file containing all functions applied in other scripts
Mass segementation of all available Chlamy data
in:
"Summary_of_Data.csv" $File
out:
save(aD, meta, file=file.path(segLocation ,paste0("aD_chlamy_segmentation_",mycomment,".RData")))
save(hS, meta, file=file.path(segLocation, paste0("hS_chlamy_segmentation_", mycomment, ".RData")))
save(segD, meta, file=file.path(segLocation ,paste0("segD_chlamy_segmentation_", mycomment, ".RData")))
Analyses quality of segmentation producing a variety of graphs
in: "segD_chlamy_segmentation_multi200_gap100.RData"
out: only plots??
chlamy small RNA loci R code This code is based on a finished loci definition as obtained from: chlamy_annotation_pipeline.R and Segmentation_Analysis.R used to investigate loci for interesting association etc and descriptive features for writing paper
in:
inputdata <- "segD_chlamy_segmentation_LociRun2018_multi200_gap100.RData" #14390
Script for running annotation functions as well as defining sRNA loci for chlamy. The appropriate thresholds (e.g. FDR) are determined in: Segmentation_Analysis.R
in:
gitdir, "Summary_of_Data.csv"
source(file.path(gitdir, "Scripts/chlamy_source_code.R"))
inputdata <- "segD_chlamy_segmentation_LociRun2018_multi200_gap100.RData" #14390
aDfile <- "aD_chlamy_segmentation_LociRun2018_multi200_gap100.RData"
"transposon_annotations.Rdata"
out:
save(gr, meta, metawt, loci, baseDir, prefix, saveLocation, file = file.path(saveLocation, paste0("gr_fdr", fdr, ".RData")))
export.gff3(gr, con = file.path(saveLocation, paste0("loci_fdr", fdr, prefix, ".gff")))
write.csv(as.data.frame(gr), file = file.path(saveLocation, paste0("loci_fdr", fdr, prefix, ".csv")))
work out which clusters and dimensions to use, and takes ages Script to compute computes diagnostic plots and figures for MCA and clustering
save(dimList, file = file.path(saveLocation,"dimList.RData"))
save(dimStab, file = file.path(saveLocation,"dimStab.RData"))
stability analysis etc. which takes a while (~2 hours)
takes the analysis output and plots them.
performs and plots the final MCA and HCPC based on the settings determined by the previous analysis. You'll find all the latest outputs and figures in "LociRun2018_multi200_gap100_90c7213_MCAOutputs_05c5bb5" including the heatmaps and chromosome tracks. Script to run MCA to cluster loci according to their annotations
in:
gitdir,"Annotation2Use.csv"
inputFile <- "gr_fdr0.05.RData"
lociRun <- "LociRun2018_multi200_gap100_90c7213"
#baseDir <- "C:/Users/Nick/Documents/PhD/Projects/Chlamy"
# Specify location of annotation outputs
inputLocation <- file.path(baseDir, "segmentation_2018", MCAOutputs)
lociLocation <- file.path(baseDir, "segmentation_2018", lociRun)
out: resMCA, gr
MCAOutputs <- "LociRun2018_multi200_gap100_90c7213_MCAOutputs_05c5bb5"
Script to run MCA to cluster loci according to their annotations Specify clusters and dimensions used
in:
load(file.path(annoDir,"chlamy_all_annotations.Rdata"), verbose = FALSE)
load(file.path(inputLocation,"clusterings.RData"))
load(file.path(inputLocation,"gr_clustered.RData"))
load(file.path(inputLocation,"resMCA.RData"))
nclust <- 6; ndim <- 7
out:
write.csv(chrLociTable,file=file.path(figLocation,"chrLociTable.csv"))
write.csv(annotTable,file=file.path(figLocation,"annotTable.csv"))
write.csv(clusterAnnotTable,file=file.path(figLocation,"clusterAnnotTable.csv"))
Clustercoverage.png