Using clinical data and molecular level data to predict survival of cancer patients.
2014 count | GBM | KIRC | LUSC | OV |
---|---|---|---|---|
clinical | 210 | 243 | 121 | 379 |
mRNA | 210 | 243 | 121 | 379 |
miRNA | 210 | 243 | 121 | 379 |
CNV | 210 | 243 | 121 | 379 |
methylation | 210 | 243 | x | 379 |
RPPA | x | 243 | 121 | 379 |
Survival | 210 | 243 | 121 | 379 |
features count | GBM | KIRC | LUSC | OV |
---|---|---|---|---|
number of features | 43437 | 38300 | 21868 | 43870 |
2017 count | OV | CESC | BLCA | ESCA | PAAD | COAD | BRCA | CHOL | GBM | PCPG | READ | PRAD | THCA | UCS | HNSC | KIRP | DLBC | LIHC | LUSC | KIRC | STAD | SARC | THYM | LGG | SKCM | TGCT | UCEC | ACC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mutation | 307 | 304 | 408 | 184 | 178 | 191 | 1093 | 36 | 166 | 179 | 72 | 497 | 501 | 57 | 520 | 290 | 48 | 373 | 501 | 533 | 415 | 262 | 120 | 530 | 103 | 150 | 177 | 79 |
CNVGene | 307 | 304 | 408 | 184 | 178 | 191 | 1093 | 36 | 166 | 179 | 72 | 497 | 501 | 57 | 520 | 290 | 48 | 373 | 501 | 533 | 415 | 262 | 120 | 530 | 103 | 150 | 177 | 79 |
CNVArm | 307 | 304 | 408 | 184 | 178 | 191 | 1093 | 36 | 166 | 179 | 72 | 497 | 501 | 57 | 520 | 290 | 48 | 373 | 501 | 533 | 415 | 262 | 120 | 530 | 103 | 150 | 177 | 79 |
Protein | 307 | 304 | 408 | 184 | 178 | 191 | 1093 | 36 | 166 | 179 | 72 | 497 | 501 | 57 | 520 | 290 | 48 | 373 | 501 | 533 | 415 | 262 | 120 | 530 | 103 | 150 | 177 | 79 |
mRNA | 307 | 304 | 408 | 184 | 178 | 191 | 1093 | 36 | 166 | 179 | 72 | 497 | 501 | 57 | 520 | 290 | 48 | 373 | 501 | 533 | 415 | 262 | 120 | 530 | 103 | 150 | 177 | 79 |
- Clinical
- Transcriptome Profiling
- Biospecimen
- Simple Nucleotide Variation(4 kinds of variant callers,Somaticsniper, Mutect, Muse, Varscan)
- Copy Number Variation
- DNA Methylation
-
2014 Random forest Assessing the clinical utility of cancer genomic and proteomic data across tumor types
-
2017 NN Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
-
2018 DL Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning