/awesome-AI4ProteinConformation-MD

List of protein conformations and molecular dynamics using generative artificial intelligence and deep learning

GNU General Public License v3.0GPL-3.0

License: GPL

awesome-AI4ProteinConformation-MD

List of protein (and PPIs) conformations and molecular dynamics (MD) using generative artificial intelligence and deep learning

Protein Space and Conformations

Updating ...

Menu

Menu Menu Menu Menu
Reviews Datasets and Package Molecular dynamics AI4MD
AlphaFold-based GNN-based LSTM-based Transformer-based
VAE-based GAN-based Flow-based
Score-Based Energy-based Bayesian-based Active Learning-based
LLM-MD

Reviews

  • Artificial Intelligence Enhanced Molecular Simulations [2023]
    Zhang, Jun, Dechin Chen, Yijie Xia, Yu-Peng Huang, Xiaohan Lin, Xu Han, Ningxi Ni et al.
    J. Chem. Theory Comput. (2023)

  • Machine Learning Generation of Dynamic Protein Conformational Ensembles [2023]
    Zheng, Li-E., Shrishti Barethiya, Erik Nordquist, and Jianhan Chen.
    Molecules 28.10 (2023)

Datasets and Package

Datasets

Package

MMolearn
a Python package streamlining the design of generative models of biomolecular dynamics

https://github.com/LumosBio/MolData

Molecular dynamics

MD Engines/Frameworks

  • Amber - A suite of biomolecular simulation programs.
  • Gromacs - A molecular dynamics package mainly designed for simulations of proteins, lipids and nucleic acids.
  • OpenMM - A toolkit for molecular simulation using high performance GPU code.
  • CHARMM - A molecular simulation program with broad application to many-particle systems.
  • HTMD - Programming Environment for Molecular Discovery.
  • ACEMD - The next generation molecular dynamic simulation software.
  • NAMD - A parallel molecular dynamics code for large biomolecular systems..

AI4MD Engines/Frameworks

  • TorchMD - End-To-End Molecular Dynamics (MD) Engine using PyTorch.
  • OpenMM-Torch - OpenMM plugin to define forces with neural networks.

MD Trajectory Processing/Analysis

  • MDAnalysis - An object-oriented Python library to analyze trajectories from molecular dynamics (MD) simulations in many popular formats.
  • MDTraj - A python library that allows users to manipulate molecular dynamics (MD) trajectories.
  • PyTraj - A Python front-end package of the popular cpptraj program.
  • CppTraj - Biomolecular simulation trajectory/data analysis.

Reference

https://github.com/ipudu/awesome-molecular-dynamics

Visualization

  • VMD - A molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting.
  • NGLview - IPython widget to interactively view molecular structures and trajectories.
  • PyMOL - A user-sponsored molecular visualization system on an open-source foundation, maintained and distributed by Schrödinger.
  • Avogadro - An advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas.

AI4MD

  • Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity [2024]
    Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
    Briefings in Bioinformatics (2024) | data

  • Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments [2024]
    Unke, Oliver T., Martin Stöhr, Stefan Ganscha, Thomas Unterthiner, Hartmut Maennel, Sergii Kashubin, Daniel Ahlin et al.
    Science Advances 10.14 (2024) | data

Deep Learning-protein conformations

AlphaFold-based

  • Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [2024]
    Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
    arXiv:2404.07102 (2024)

  • High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 [2024]
    Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
    Nat Commun 15, 2464 (2024) | code

  • AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
    Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
    arXiv:2402.04845 (2024) | code

  • Predicting multiple conformations via sequence clustering and AlphaFold2 [2024]
    Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
    Nature 625, 832–839 (2024) | code

  • Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures [2023]
    Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
    bioRxiv (2023) | code

  • Sampling alternative conformational states of transporters and receptors with AlphaFold2 [2022]
    Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
    Elife 11 (2022) | code

GNN-based

  • RevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints [2024]
    Huang, Ying, Huiling Zhang, Zhenli Lin, Yanjie Wei, and Wenhui Xi.
    bioRxiv (2024) | code

LSTM-based

  • Learning molecular dynamics with simple language model built upon long short-term memory neural network [2020]
    Tsai, ST., Kuo, EJ. & Tiwary, P.
    Nat Commun 11, 5115 (2020) | code

Transformer-based

  • Exploring the conformational ensembles of protein-protein complex with transformer-based generative model [2024]
    Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
    bioRxiv (2024) | code

  • Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers [2024]
    Chennakesavalu, Shriram, and Grant M. Rotskoff.
    The Journal of Physical Chemistry B (2024) | code

  • Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
    Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
    arXiv:2206.04683 (2022) | code

VAE-based

  • Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling [2024]
    Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
    J. Chem. Theory Comput. (2024)

  • Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling [2024]
    Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
    Briefings in Bioinformatics. (2024) | code

  • Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder [2023]
    JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
    International Journal of Molecular Sciences. (2023) | code

  • Encoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence [2023]
    Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
    bioRxiv (2023)

  • Artificial intelligence guided conformational mining of intrinsically disordered proteins [2022]
    Gupta, A., Dey, S., Hicks, A. et al.
    Commun Biol 5, 610 (2022) | code

  • LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories [2022]
    Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
    J. Chem. Inf. Model. (2022) | code

  • Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
    Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
    arXiv:2206.04683 (2022) | code

  • ProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space [2021]
    Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
    ICLR (2022)

  • Explore protein conformational space with variational autoencoder [2021]
    Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
    Frontiers in molecular biosciences 8 (2021) | code

GAN-based

  • Direct generation of protein conformational ensembles via machine learning [2023]
    Janson, G., Valdes-Garcia, G., Heo, L. et al.
    Nat Commun 14, 774 (2023) | code

  • Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
    Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
    arXiv:2206.04683 (2022) | code

Flow-based

  • AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
    Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
    arXiv:2402.04845 (2024) | code

Score-based

  • Str2str: A score-based framework for zero-shot protein conformation sampling [2024]
    Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
    ICLR (2024) | code

  • Score-based enhanced sampling for protein molecular dynamics [2023]
    Lu, Jiarui, Bozitao Zhong, and Jian Tang.
    arXiv:2306.03117 (2023) | code

Energy-based

  • Energy-based models for atomic-resolution protein conformations [2020]
    Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
    ICLR (2020) | code

Bayesian-based

  • Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network [2023]
    Do, Hung N., and Yinglong Miao.
    bioRxiv(2023) | code

  • Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space [2023]
    Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
    bioRxiv(2023) | code

Active Learning-based

  • Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [2023]
    Kleiman, Diego E., and Diwakar Shukla.
    J. Chem. Theory Comput. (2023) | code

LLM-MD

  • Molecular simulation with an LLM-agent [2024]
    MD-Agent is a LLM-agent based toolset for Molecular Dynamics.
    code