Generative Densification: Learning to Densify Gaussians
for High-Fidelity Generalizable 3D Reconstruction
Seungtae Nam* · Xiangyu Sun* · Gyeongjin Kang · Younggeun Lee · Seungjun Oh · Eunbyung Park
Our method selectively densifies coarse Gaussians generated by generalized feed-forward models. |
- please follow the official document for installation.
- if you already installed both of them, please skip this part.
git clone https://github.com/stnamjef/GenerativeDensification.git --recursive
- please prepare the datasets first following the instructions.
- then run below at
/your/path/to/GenerativeDensification
(notice the dot at the end).
docker build -t generative_densification:0.0.1 .
docker run -it -v $(pwd):/workspace --ipc host --gpus all generative_densification:0.0.1
- run below at
/workspace
inside the docker container.
pip3 install ./third_party/diff-gaussian-rasterization
- Our object-level model is trained on Gobjaverse training set, provided by LaRa.
- We do cross-dataset generalization on GSO and Co3D dataset. You can download our preprocessed Co3D dataset here.
- Note:
- The Gobjaverse dataset requires 1.4TB of storage.
- We assume the datasets are in the
./GenerativeDensification/dataset
.
GenerativeDensification
├── dataLoader
├── dataset
│ ├── gobjaverse
│ │ ├── gobjaverse_part_01.h5
│ │ ...
│ │
│ ├── google_scanned_objects
│ │ ├── 2_of_Jenga_Classic_Game
│ │ ...
│ ...
├── lightning
...
- You can enable residual learning by setting
model.enable_residual_attribute=True
.
python train_lightning.py \
train_dataset.data_root=./dataset/gobjaverse/gobjaverse.h5 \
test_dataset.data_root=./dataset/gobjaverse/gobjaverse.h5 \
model.enable_residual_attribute=False
- We provide two checkpoints (w/ residual learning and w/o it) for our object-level models.
- Note:
- The checkpoint 'epoch=49.ckpt' corresponds to 'Ours' model in the paper.
- The checkpoint 'epoch=49_residual.ckpt' corresponds to 'Ours (w/ residual)' model in the paper.
python eval_all.py
Our work is built upon the following projects. We thank all the authors for making their amazing works publicly available.
@article{GenerativeDensification,
title={Generative Densification: Learning to Densify Gaussians for High-Fidelity Generalizable 3D Reconstruction},
author={Nam, Seungtae and Sun, Xiangyu and Kang, Gyeongjin and Lee, Younggeun and Oh, Seungjun and Park, Eunbyung},
journal={arXiv preprint arXiv:2412.06234},
year={2024}
}