/Medical_Segmentation_Benchmark

A medical image segmentation project for open dataset by using pytorch project

Primary LanguagePythonApache License 2.0Apache-2.0


Medical Segmentation Benchmark

Python - Version PyTorch - Version Pytorch-Lightning - Version

MONAI - Version Albumentations - Version

Description

This Project is base on Pytorch and Pytorch-Lightning and focus on Medical Image Segmentation

How to run

First, install dependencies

# clone project   
git clone https://github.com/t110368027/Medical_Segmentation_Benchmark

# install project   
cd Medical_Segmentation_Benchmark
pip install -e .   
pip install -r requirements.txt

Next, navigate to any file and run it.

# run module   
python train.py -m MODEL -dn DATASET_NAME
## MODEL UNet, NestedUNet, UNet_3Plus, AttU_Net, R2AttU_Net, and so on
## DATASET_NAME CHUAC, DCA1, STARE, CHASEDB1

Prepare dataset

Before run this project you need to download the dataset :

./Medical_Segmentation_Benchmark/
├── data/
│   ├─angiography
│   │  ├─Hemotool
│   │  │  └─angio1.png_mask.png  
│   │  ├─Original
│   │  │  └─1.png
│   │  └─Photoshop
│   │     └─angio1ok.png
│   ├─CHASE_DB1
│   │  ├─Images
│   │  │  └─Image_01L.jpg
│   │  └─Masks
│   │     └─Image_01L_1stHO.png
│   ├─DB_Angiograms_134
│   │  ├─Database_134_Angiograms
│   │  │  ├─1.pgm
│   │  │  ├─1_gt.pgm
│   ├─STARE
│   │  ├─imgs
│   │  │  └─im0001.png
│   │  └─label-ah
│         └─im0001.ah.png
├── datasets/
│   ├─CHASEDB1
│   │  └─set.npz
│   ├─CHUAC
│   │  └─set.npz
│   ├─DCA1
│   │  └─set.npz
│   └─STARE
│      └─set.npz
├── README.md
└── train.py

Choose a path to create a folder with the dataset name and download datasets

  1. CHASEDB1
  2. STARE
  3. DCA1
  4. CHUAC

Follow data structure tree before.

Then run preprocess.py convert .jpg, .png or .pgm to numpy array and save it to .npz file

# run module   
python preprocess.py -dp DATASET_PATH -dn DATASET_NAME

## DATASET_PATH ./data
## DATASET_NAME CHUAC, DCA1, STARE, CHASEDB1

Citation

@misc{Medical_Segmentation_Benchmark,
  author = {Jia-Ming Hou},
  title = {{Medical_Segmentation_Benchmark}},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/t110368027/Medical_Segmentation_Benchmark}},
  version = {0.0.1}, 
}

License

Project is distributed under Apache 2.0