Dale Decatur, Itai Lang, Kfir Aberman, Rana Hanocka
In this work we develop 3D Paintbrush, a technique for automatically texturing local semantic regions on meshes via text descriptions. Our method is designed to operate directly on meshes, producing texture maps which seamlessly integrate into standard graphics pipelines. We opt to simultaneously produce a localization map (to specify the edit region) and a texture map which conforms to it. This synergistic approach improves the quality of both the localization and the stylization. To enhance the details and resolution of the textured area, we leverage multiple stages of a cascaded diffusion model to supervise our local editing technique with generative priors learned from images at different resolutions. Our technique, referred to as Cascaded Score Distillation (CSD), simultaneously distills scores at multiple resolutions in a cascaded fashion, enabling control over both the granularity and global understanding of the supervision. We demonstrate the effectiveness of 3D Paintbrush to locally texture a variety of shapes within different semantic regions.
To see a demo of the Cascaded Score Distillation (CSD) loss, check out this notebook applying CSD to image generation and image editing. CSD enables us to supervise our optimization with multiple cascaded stages of the diffusion model instead of just the base stage used in standard SDS. We distill scores across multiple stages of a cascaded diffusion model simultaneously in order to leverage both the global awareness of the first stage and the higher level of detail contained in later stages.
- 48 GB GPU
- CUDA 11.3
- Python 3.10
If you have less than 48 GB of GPU memory, you can still run the code, see the section on memory optimization for more details.
First create the conda environment:
conda create -n "3d-paintbrush" python=3.10
and activate it with:
conda activate 3d-paintbrush
Next install the required packages by running the install script. Make sure to run this script with access to a GPU.
bash ./install_environment.sh
Instructions from DeepFloyd IF:
- If you do not already have one, create a Hugging Face account
- Accept the license on the model card of DeepFloyd/IF-I-XL-v1.0
- Log in to Hugging face locally. First install
huggingface_hub
pip install huggingface_hub --upgrade
run the login function in a python shell
from huggingface_hub import login
login()
and enter your Hugging Face Hub access token.
To use our pre-trained models download both the trained_models
and inverse_map_cache
folders from here and add them under the data folder to create the following directory structure:
├── data
│ ├── inverse_map_cache
│ ├── trained_models
│ ├── hand.obj
...
│ ├── spot.obj
To run the pre-trained models, use the commands below. Results will be saved at results/[name-of-mesh]/[name-of-edit]/renders/infernce.png
.
Spot:
python src/main.py --config_path demo/spot/gold_chain_necklace.yaml --log.inference true --log.model_path ./data/trained_models/spot/gold_chain_necklace.pth
python src/main.py --config_path demo/spot/heart-shaped_sunglasses.yaml --log.inference true --log.model_path ./data/trained_models/spot/heart-shaped_sunglasses.pth
python src/main.py --config_path demo/spot/colorful_crochet_hat.yaml --log.inference true --log.model_path ./data/trained_models/spot/colorful_crochet_hat.pth
Person:
python src/main.py --config_path demo/person/tie-dye_apron.yaml --log.inference true --log.model_path ./data/trained_models/person/tie-dye_apron.pth
python src/main.py --config_path demo/person/colorful_polo_shirt.yaml --log.inference true --log.model_path ./data/trained_models/person/colorful_polo_shirt.pth
python src/main.py --config_path demo/person/superman_chest_emblem.yaml --log.inference true --log.model_path ./data/trained_models/person/superman_chest_emblem.pth
Lego Minfigure:
python src/main.py --config_path demo/lego_minifig/barcelona_jersey.yaml --log.inference true --log.model_path ./data/trained_models/lego_minifig/barcelona_jersey.pth
python src/main.py --config_path demo/lego_minifig/blue_denim_overalls.yaml --log.inference true --log.model_path ./data/trained_models/lego_minifig/blue_denim_overalls.pth
python src/main.py --config_path demo/lego_minifig/red_bow_tie.yaml --log.inference true --log.model_path ./data/trained_models/lego_minifig/red_bow_tie.pth
Hand:
python src/main.py --config_path demo/hand/fancy_gold_watch.yaml --log.inference true --log.model_path ./data/trained_models/hand/fancy_gold_watch.pth
To reproduce results from the paper from scratch, just pass a predefined demo config file. Results will be saved at results/[name-of-mesh]/[name-of-edit]
.
Spot:
python src/main.py --config_path demo/spot/gold_chain_necklace.yaml
python src/main.py --config_path demo/spot/heart-shaped_sunglasses.yaml
python src/main.py --config_path demo/spot/colorful_crochet_hat.yaml
Person:
python src/main.py --config_path demo/person/tie-dye_apron.yaml
python src/main.py --config_path demo/person/colorful_polo.yaml
python src/main.py --config_path demo/person/superman_chest_emblem.yaml
Lego Minifigure:
python src/main.py --config_path demo/lego_minifig/barcelona_jersey.yaml
python src/main.py --config_path demo/lego_minifig/blue_denim_overalls.yaml
python src/main.py --config_path demo/lego_minifig/red_bow_tie.yaml
Hand:
python src/main.py --config_path demo/hand/fancy_gold_watch.yaml
To run your own examples you can create your own config files and pass those as done in the prior section. Additionally, you can instead pass values for any of the fields in src/configs/train_config
as command line arguments. For example, to run the hand example without passing a config file, you may call:
python src/main.py --log.exp_dir results/hand/fancy_gold_watch --mesh.path ./data/spot.obj --guidance.object_name "hand" --guidance.style "fancy gold" --guidance.edit "watch"
If you do not have access to a 48 GB GPU, you can...
- Enable CPU offloading by setting the flag
cpu_offload
toTrue
insrc/configs/guidance_config.py
. This will significanly reduce memory usage, but comes at the cost of speed. - Use a smaller batch size by changing the
batch_size
parameter either with the command line argument--optim.batch_size
or in a custom config file. While this reduces memory usage, it can affect the accuracy. - Sample a subset of surface points each iteration (set
sample_points
toTrue
and adjustmlp_batch_size
). While this reduces memory usage, it can affect the accuracy. - Turn off batched score distillation calls (set
batched_sd
toFalse
). This will reduce memory usage, but comes at the cost of speed.
Our codebase is based on Latent-NeRF/Latent-Paint and our CSD guidance code is structured in the format of ThreeStudio's guidance modules. We thank these authors for their amazing work.
If you find this code helpful for your research, please cite our paper 3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation.
@article{decatur2023paintbrush,
author = {Decatur, Dale and Lang, Itai and Aberman, Kfir and Hanocka, Rana},
title = {3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation},
journal = {arXiv},
year = {2023}
}