/Differential-Drive-Robot

Path planning and control algorithms for a differential drive robot using ROS2

Primary LanguagePython

Overview

This repo contains the code for controlling both a real and a simulated differential drive robot via ROS2 using different planners, controllers, and open-source libraries for slam and odometry.

List of available controllers

  1. Approximate linearization
  2. Input-Output linearization
  3. Input-Output linearization + Linear MPC via Casadi
  4. Dynamic linearization
  5. Nonlinear Lyapunov
  6. Nonlinear MPC via Casadi
  7. Nonlinear MPC via Acados
  8. Iterative Linear Quadratic Regulator
  9. Iterative Linear Quadratic Regulator via Crocoddyl
  10. Predictive Sampling MPC

List of available planners

  1. A*
  2. Breadth First search
  3. Djikstra
  4. Greedy Best First search
  5. RRT
  6. RRT* (in progress)
  7. RRT-primitives

Repository structure

It includes the following folders and subfolders:

  1. python_scripts: most of the ROS2 nodes call some classes here

  2. coppeliasim_simulation: scenes used for simulating the robot (dynamically enabled or not)

  3. ros2_ws: collection of ROS2 nodes for controlling the robot with the aid of some external tools such as slam_toolbox (generate a map and localization) and kiss-icp (lidar odometry)

Dependencies

  1. ROS2 Humble

  2. CoppeliaSim

  3. kiss-icp

  4. slam_toolbox

Build on linux

  1. clone the repo
git clone --recurse-submodules https://github.com/giulioturrisi/differential_drive.git
  1. extract CoppeliaSim in Differential-Drive-Robot/coppeliasim_simulation

  2. add the following ls in ros2_ws/src/simExtROS2/meta/interfaces.txt

geometry_msgs/msg/Twist
geometry_msgs/msg/TwistStamped
sensor_msgs/msg/LaserScan
  1. build the docker file inside Differential-Drive-Robot/docker_file/integrated_gpu or /nvidia
docker build -t ros2_humble .
  1. add alias to start the docker
cd 
gedit .bashrc
alias ddrive_humble='xhost + && docker run -it --rm -v /path/to/your_folder/Differential-Drive-Robot:/home/ -v /tmp/.X11-unix:/tmp/.X11-unix:rw --device=/dev/input/ -e DISPLAY=$DISPLAY -e WAYLAND_DISPLAY=$WAYLAND_DISPLAY  -e QT_X11_NO_MITSHM=1 --gpus all --name ddrive_humble ros2_humble'  (if used /nvidia)
alias ddrive_humble="xhost + && docker run -it --rm -v /path/to/your_folder/Differential-Drive-Robot:/home/ -v /tmp/.X11-unix:/tmp/.X11-unix --device=/dev/dri --device=/dev/input/ -e DISPLAY=$DISPLAY -e WAYLAND_DISPLAY=$WAYLAND_DISPLAY --name ddrive_humble  ros2_humble" (if used /integrated_gpu)
alias ddrive_humble='xhost + && docker run -it --rm -v /path/to/your_folder/Differential-Drive-Robot:/home/ -v /tmp/.X11-unix:/tmp/.X11-unix -v /mnt/wslg:/mnt/wslg -v /usr/lib/wsl:/usr/lib/wsl --device=/dev/dxg -e DISPLAY=$DISPLAY -e WAYLAND_DISPLAY=$WAYLAND_DISPLAY -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR -e PULSE_SERVER=$PULSE_SERVER -e LD_LIBRARY_PATH=/usr/lib/wsl/lib --name ddrive_humble ros2_humble' (if Windows Linux Subsystem)

alias ddrive='docker exec -it ddrive_humble bash' (to attach a new terminal to the running docker)
  1. start docker and build
ddrive_humble
cd ros2_ws
rosdep install -y -r -q --from-paths src --ignore-src --rosdistro humble
ulimit -s unlimited
colcon build --symlink-install

How to run the simulation

All the commands below can be easily launched via some aliases. Check them by activating the docker ddrive_humble and writing on the keyboard launch_ (plus tab for the autocomplete)

Follow the commands below to run all the framework:

  1. on a new terminal first launch the simulation
launch_sim_kinematics                                              (scene with kinematics)
launch_sim_dynamics                                                (scene with dynamics)
  1. on each new terminal, then launch all the other packages
launch_joy                                                         (to use the joystick)
launch_rviz                                                        (visualization)
launch_planners                                                    (planning)
launch_controllers                                                 (control)
launch_lidar_odometry                                              (tf and kiss-icp)
launch_slam                                                        (slam-toolbox)
ros2 launch ydlidar_ros2_driver ydlidar_launch.py                  (ydlidar - only real robot)
  1. you can choose a goal pose in Rviz2 clicking 2D Goal Pose

Status

Still working in progress, the real robot exists but it's not yet finalized!