/imap-machine-learning

Predictive modeling for microbiome data

Primary LanguageRMIT LicenseMIT

IMAP PART 10: Machine Learning

---In Progress---


IMAP-Repo Description GH-Pages
OVERVIEW IMAP project overview Link
PART 01 Software requirements for microbiome data analysis with Snakemake workflows Link
PART 02 Downloading and exploring microbiome sample metadata from SRA Database Link
PART 03 Downloading and filtering microbiome sequencing data from SRA database Link
PART 04 Quality control of microbiome next-generation sequencing reads Link
PART 05 Microbial profiling using MOTHUR and Snakemake workflows Link
PART 06 Microbial profiling using QIIME2 and Snakemake workflows Link
PART 07 Processing output from 16S-based microbiome bioinformatics pipelines Link
PART 08 Exploratory analysis of processed 16S-based microbiome data Link
PART 09 Statistical analysis of processed 16S-based microbiome data Link
PART 10 Machine learning analysis of processed 16S-based microbiome data Link

Session information

For a detailed overview of the tools and versions suitable for this guide, explore the session information.

Citation

Please consider citing the iMAP article if you find any part of the iMAP practical user guides helpful in your microbiome data analysis.

Buza, T. M., Tonui, T., Stomeo, F., Tiambo, C., Katani, R., Schilling, M., … Kapur, V. (2019). iMAP: An integrated bioinformatics and visualization pipeline for microbiome data analysis. BMC Bioinformatics, 20. https://doi.org/10.1186/S12859-019-2965-4

🎉 Raise awareness

Please help increase awareness of freely available tools for microbiome data analysis. See Dimensions of the iMAP article