Transcriptomic tools to classify bladder tumours according to six published molecular classifications : Baylor[1], UNC[2], MDA[3], Lund[4], CIT-Curie[5], TCGA[6]
For now, you can cite the following bioRxiv preprint: bioRxiv 488460; doi: https://doi.org/10.1101/488460 https://github.com/cit-bioinfo/BLCAsubtyping
You may install this package with devtools:
library(devtools)
devtools::install_github("cit-bioinfo/BLCAsubtyping")
library(BLCAsubtyping)
This package provides a main function named classify
which labels a batch of RNA transcriptomic profiles according to one or several of the 6 classifications implemented.
classify
requires the following main arguments :
expMat
: A data.frame or matrix of normalized expression data with genes in row and samples in column. RNA-seq data should be log-transformed.gpl
: A data.frame with gene/probeset annotation with at least one column with HGNC gene symbols and row names corresponding to the row names ofexpMat
.symbol
: A character specifying the column name ofgpl
containing HGNC gene symbols.classification.systems
: A character vector with the names of the classifications to be run on theexpMat
data, among "Baylor"([1]), "UNC"([2]), "MDA"([3]), "Lund"([4]), "CIT"([5]), "TCGA"([6]).
The package includes an example dataset [5] to illustrate the use of the main function.
data(example_dat)
example_dat contains a list cit
with two items 'expMat' and 'gpl'
In the following call to classify
, the samples will be classified according to all 6 classification systems.
cl <- classify(expMat = cit$expMat, gpl = cit$gpl, symbol = "Symbol", classification.systems = c("Baylor", "UNC", "MDA", "CIT", "Lund", "TCGA"))
#predicting Baylor subtypes......DONE
#predicting UNC subtypes...[1] "47 of 47 genes from the initial predictor are measured in this dataset"
#123456789101112131415161718192021222324252627282930...DONE
#predicting CIT subtypes......DONE
#predicting Lund subtypes......DONE
#predicting MDA subtypes......DONE
#predicting TCGA subtypes......DONE
The function returns a dataframe with subtyping results from each classification system for all samples.
head(cl)
# ID Baylor.subtype UNC.subtype CIT.subtype Lund.subtype MDA.subtype TCGA.subtype
#1 CIT.038 Basal Basal MC7 Ba/Sq-Inf basal Basal_squamous
#2 CIT.073 Differentiated Luminal MC5 GU-Inf luminal Luminal
#3 CIT.075 Basal Basal MC7 Ba/Sq basal Basal_squamous
#4 CIT.078 Basal Basal MC7 Ba/Sq basal Basal_squamous
#5 CIT.085 Basal Luminal MC1 UroA-Prog luminal Luminal_papillary
#6 CIT.100 Differentiated Luminal MC2 GU-Inf p53-like Luminal
[1] Mo, Q. et al. Prognostic Power of a Tumor Differentiation Gene Signature for Bladder Urothelial Carcinomas. J. Natl. Cancer Inst. (2018).
[2] Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl. Acad. Sci. U.S.A. 111, 3110–3115 (2014).
[3] Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).
[4] Marzouka, N. et al. A validation and extended description of the Lund taxonomy for urothelial carcinoma using the TCGA cohort. Scientific Reports 8, 3737 (2018).
[5] Rebouissou, S. et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 6, 244ra91 (2014).
[6] Robertson, A. G. et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 171, 540-556.e25 (2017).