/HMNet_pth

PyTorch implementation of Hierarchical Neural Memory Network

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Hierarchical Neural Memory Network

This repo is a PyTorch implementation of HMNet proposed in our paper: Hierarchical Neural Network for Low Latency Event Processing.

Results and models

Pre-trained weights are coming soon!

DSEC-Semantic (Semantic Segmentation)

Model size mIoU [%] latency V100 [ms] latency V100 x 3 [ms] weights
HMNet-B1 640 x 440 51.2 7.0 - github
HMNet-L1 640 x 440 55.0 10.5 - github
HMNet-B3 640 x 440 53.9 9.7 8.0 github
HMNet-L3 640 x 440 57.1 13.9 11.9 github

GEN1 (Object Detection)

Model size mAP [%] latency V100 [ms] latency V100 x 3 [ms] weights
HMNet-B1 304 x 240 45.5 4.6 - github
HMNet-L1 304 x 240 47 5.6 - github
HMNet-B3 304 x 240 45.2 7.0 5.9 github
HMNet-L3 304 x 240 47.1 7.9 7.0 github

MVSEC day1 (Monocular Depth Estimation)

Model size AbsRel RMS RMSElog latency V100 [ms] latency V100 x 3 [ms] weights
HMNet-B1 346 x 260 0.385 9.088 0.509 2.4 - github
HMNet-L1 346 x 260 0.310 8.383 0.393 4.1 - github
HMNet-B3 346 x 260 0.270 7.101 0.332 5.0 4.1 github
HMNet-L3 346 x 260 0.254 6.890 0.319 6.9 5.4 github
HMNet-B3 w/ RGB 346 x 260 0.252 6.972 0.318 5.4 4.1 github
HMNet-L3 w/ RGB 346 x 260 0.230 6.922 0.310 7.1 5.4 github

Requirements

  • PyTorch >= 1.12.1
  • torch_scatter
  • timm
  • hdf5plugin

Installation

Create a new conda environment

conda create -n hmnet python=3.7
conda activate hmnet

Install dependencies

pip install -r requirements.txt
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.12.1+cu113.html
pip install timm

Experiments

Please see the instructions on each task page.

License

The majority of this project is licensed under GPLv3 License. However, some code (psee_evaluator.py, coco_eval.py, det_head_yolox.py) is available under the Apache 2.0 license.

Acknowledgments

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).