violet-sto's Stars
pytorch/pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration
d2l-ai/d2l-zh
《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。
scutan90/DeepLearning-500-questions
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06
floodsung/Deep-Learning-Papers-Reading-Roadmap
Deep Learning papers reading roadmap for anyone who are eager to learn this amazing tech!
facebookresearch/detectron2
Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
yunjey/pytorch-tutorial
PyTorch Tutorial for Deep Learning Researchers
ageron/handson-ml2
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
pyg-team/pytorch_geometric
Graph Neural Network Library for PyTorch
zergtant/pytorch-handbook
pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行
ShusenTang/Dive-into-DL-PyTorch
本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为PyTorch实现。
rasbt/deeplearning-models
A collection of various deep learning architectures, models, and tips
thunlp/GNNPapers
Must-read papers on graph neural networks (GNN)
bharathgs/Awesome-pytorch-list
A comprehensive list of pytorch related content on github,such as different models,implementations,helper libraries,tutorials etc.
dmlc/dgl
Python package built to ease deep learning on graph, on top of existing DL frameworks.
naganandy/graph-based-deep-learning-literature
links to conference publications in graph-based deep learning
snap-stanford/ogb
Benchmark datasets, data loaders, and evaluators for graph machine learning
rosinality/glow-pytorch
PyTorch implementation of Glow
ehoogeboom/multinomial_diffusion
TrentBrick/PyTorchDiscreteFlows
Discrete Normalizing Flows implemented in PyTorch
didriknielsen/argmax_flows
Code for paper "Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions"
violet-sto/Awesome-GNN-papers